
FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

TASKS 1.0 AND 2.2 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-121-07 COCHISE COUNTY, ARIZONA

Prepared for:

FREEPORT-MCMORAN CORPORATION COPPER QUEEN BRANCH

36 West Highway 92 Bisbee, Arizona 85603

Prepared by:

CLEAR CREEK ASSOCIATES, P.L.C.

221 North Court Avenue Suite 101 Tucson, Arizona 85701

January 14, 2011

FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

TASKS 1.0 AND 2.2 OF AQUIFER CHARACTERIZATION PLAN MITIGATION ORDER ON CONSENT DOCKET NO. P-121-07 COCHISE COUNTY, ARIZONA

Prepared for:

FREEPORT-MCMORAN CORPORATION COPPER QUEEN BRANCH

36 West Highway 92 Bisbee, Arizona 85603

Approved by:

James R. Norris

Arizona Registered Geologist No. 30842

Expires 12/311

TABLE OF CONTENTS

1.	INTRODUCTION	.]
	1.1 Scope of Groundwater Monitoring	
2.	GROUNDWATER MONITORING RESULTS	-
۷.	2.1 Results of Monitoring for Tasks 1.0 and 2.2	
	2.2 Quality Assurance/Quality Control Review	
	2.2 Quanty Assurance Quanty Control Review	
3.	FINDINGS	. 4
4.	REFERENCES	-
т.	KEI EKEIVEES	٠.
	THE DY DG	
	TABLES	
1	Schedule for Water Quality Sampling and Water Level Monitoring	
2	Summary of Groundwater Monitoring for Fourth Quarter 2010	
3	Compilation of Analytical Results for Sulfate and Field Parameters	
4	Compilation of Groundwater Elevation Data	
	FIGURES	
1	Generalized Geology and Well Locations	
2	Sulfate Concentrations in Groundwater for Fourth Quarter 2010	
3	Groundwater Elevations for Fourth Quarter 2010	
4	Sulfate Concentration Over Time in Public Drinking Water Supply Wells	
5	Hydrographs for BMO Monitor Wells in Basin Fill	
6	Hydrographs for BMO Monitor Wells in Bedrock	
	APPENDICES	
A	Data Verification Report	
B	Analytical Reports	
C	Groundwater Sampling Forms	
_	Crowner Sumpring round	

1. INTRODUCTION

This report provides the results of groundwater monitoring conducted by Freeport-McMoRan Corporation Copper Queen Branch (CQB) in the fourth quarter 2010 in the vicinity of the Concentrator Tailing Storage Area (CTSA). Groundwater monitoring is conducted pursuant to Tasks 1.0 (well inventory of drinking water wells) and 2.2 (groundwater monitoring) of the Work Plan (Hydro Geo Chem, Inc. [HGC], 2008a) to characterize sulfate in the vicinity of the CTSA. The Work Plan was submitted to Arizona Department of Environmental Quality (ADEQ) on December 17, 2007 pursuant to the Mitigation Order on Consent Docket No. P-121-07 (ADEQ, 2007). CQB initiated water sampling prior to work plan approval while ADEQ was commenting on the Work Plan and CQB was responding to their comments. Revision 1 of the Work Plan was submitted to ADEQ on July 3, 2008 and ADEQ approved the Work Plan on August 3, 2008. On January 25, 2010 CQB proposed a revised groundwater monitoring program (CQB, 2010). The revised monitoring program was approved by ADEQ in April 2010 (ADEQ, 2010). Clear Creek Associates (Clear Creek) prepared this groundwater monitoring report on behalf of CQB.

1.1 Scope of Groundwater Monitoring

The objectives of groundwater monitoring are:

- Determination of the sulfate concentration in drinking water supply wells (DWS) outside of and within one mile of the sulfate plume for the purpose of identifying the need for mitigation actions and tracking the plume margin,
- Identification of the plume margin for ongoing delineation of the plume extent and migration,
- Documentation of the sulfate concentration in the plume and at areas distal to the plume to monitor long-term concentration trends, and
- Measurement of water levels in the vicinity of the plume to document potentiometric conditions (CQB, 2010).

The groundwater plume is considered to consist of groundwater with sulfate in excess of 250 milligrams per liter (mg/L) attributable to the CTSA. The sample collection and analysis specifications of the Work Plan have been retained throughout the groundwater monitoring program. Table 1 provides the schedule for the groundwater monitoring program. Dissolved sulfate is the only constituent monitored.

Figure 1 presents a generalized geologic map of the study area and well locations where data have been collected during this reporting period. Table 2 lists wells identified for monitoring in the fourth quarter, their availability for sampling, and their sampling status. Groundwater sampling and analysis methods used by Clear Creek and CQB are described in the Quality Assurance Project Plan (QAPP) contained in Appendix F of the Work Plan (HGC, 2008a). Results of groundwater monitoring are presented in Section 2.

Four new monitor wells, BMO-2010-1M, BMO-2010-2M, BMO-2010-3B, and BMO-2010-3M, were installed in the third quarter of 2010. The new wells were added to the groundwater monitoring program pursuant to Section 3 of the Work Plan (HCG, 2008a).

2. GROUNDWATER MONITORING RESULTS

2.1 Results of Monitoring

Analytical results and groundwater elevation data for the fourth quarter 2010 are tabulated in Tables 3 and 4, respectively, along with information previously collected under the Mitigation Order¹. Figure 2 shows the concentrations of dissolved sulfate in the wells sampled in the fourth quarter 2010. The most recent sample results are shown at wells where multiple samples were collected during the quarter. The highest sulfate concentration measured at co-located wells was used for concentration contouring. Figure 3 shows groundwater elevations in the fourth quarter 2010. Groundwater elevations were calculated using depth to water measurements made under static (nonpumping) conditions for all wells shown.

2.2 Quality Assurance/Quality Control Review

Pursuant to Section 6.4 of the QAPP, a data verification report was prepared for quality assurance and quality control purposes. The data verification report and analytical laboratory reports for data collected by Clear Creek and CQB during the fourth quarter 2010 are included in Appendix A and Appendix B, respectively. Copies of groundwater sampling forms for samples collected by Clear Creek and CQB are in Appendix C. As determined by the analytical data verification review, all data for samples collected in the fourth quarter 2010 by Clear Creek and CQB are of acceptable quality for use in the groundwater monitoring being conducted pursuant to the Mitigation Order.

On October 20, 2010 Clear Creek met with David Rogers and confirmed that water quality samples were collected from the ROGERS 803 well in the third and fourth quarters of 2010. Additionally, it was determined that both ROGERS 803 and ROGERS 596 wells are connected to the same sampling point. ROGERS 803 was sampled between February 2008 and August 2009. ROGERS 803 became inoperable and ROGERS 596 was sampled from October 2009 to April 2010. ROGERS 803 was repaired and was sampled in July and October 2010. The changes in the sampling history at the property are reflected in Table 3.

_

3. FINDINGS

This report provides the results of groundwater monitoring conducted within the vicinity of the CTSA for the fourth quarter 2010. Groundwater samples were collected from 49 wells and depth to water measurements were collected at 36 wells. The December 2010 Aquifer Characterization Report (Clear Creek, 2010) provides detailed descriptions of the hydrogeology, water quality, and sulfate plume. Findings based on the fourth quarter 2010 groundwater monitoring are described below.

- Water quality samples have been collected from wells completed in three principal water bearing units in the area: basin fill, undifferentiated Bisbee Group, and Glance Conglomerate. The undifferentiated Bisbee Group consists, from youngest to oldest, of the Cintura Formation, Upper Mural Limestone, Lower Mural Limestone and Morita Formation. Figures 2 and 3 provide the screened lithology of the wells sampled.
- Sulfate concentration data indicate that the plume extends to the southwest from the vicinity of the former evaporation pond to the vicinity of Naco and to the south to the vicinity of Bisbee Junction (Figure 2). The groundwater monitoring data indicate that the sulfate plume extends over an area of approximately 2.5 miles by 3.9 miles and is contained primarily in the basin fill and undifferentiated Bisbee Group except near the former evaporation pond where wells in the Glance Conglomerate have sulfate concentrations greater than 250 mg/L.
- Comparison of the fourth quarter 2010 sulfate concentrations with previous quarters indicates no large scale change in the plume geometry since the Mitigation Order sampling began in the fourth quarter 2008, although concentration contours within the plume have been modified to reflect current concentrations.
- Figure 4 shows sulfate concentrations through time at public drinking water supply wells that are not receiving mitigation actions. Sulfate concentrations have remained relatively stable over time, although NWC-04 displays the greatest variability in concentration
- Groundwater elevations decrease from north to south in the area east of the Black Gap Fault and between the Bisbee Municipal Airport and Bisbee Junction, and from east to west across the central portion of the study area west of the Black Gap Fault (Figure 3).
- Figures 5 and 6 show groundwater elevations over time for BMO monitor wells with screen intervals in basin fill and bedrock, respectively, except for monitor wells installed in 2010. Groundwater elevations in BMO monitor wells screened in basin fill decrease over time. The maximum decrease has been 2.65 feet since July 2008. Groundwater elevations in BMO monitor wells screened in bedrock are relatively steady over time, although BMO-2008-10GL and BMO-2008-11G display increasing trends whereas BMO-2008-1G displays a decreasing trend.

4. REFERENCES

- Arizona Department of Environmental Quality (ADEQ). 2007. Mitigation Order on Consent, Docket No. P-121-07, In the Matter of: Phelps Dodge Corporation, Copper Queen Branch, located at 36 West Highway 92, Bisbee, Arizona, ADEQ Identification Number 100531. November 14, 2007.
- ADEQ. 2010. Correspondence from Cynthia Campbell, ADEQ, to Rebecca Sawyer, CQB, Re: Request to Modify Groundwater Monitoring Program, Mitigation Order on Consent No. P-127-07, Your Letter dated January 25, 2010. April 22, 2010.
- Clear Creek Associates (Clear Creek). 2010. Revision I Aquifer Characterization Report, Task 4.0 of Aquifer Characterization Plan, Mitigation Order on Consent Docket No. P-121-07, Cochise County, Arizona, Volumes I and II. December 15, 2010.
- Freeport McMoRan Copper Queen Branch (CQB). 2010. Correspondence from Rebecca Sawyer, CQB, to Cynthia Campbell, ADEQ, Re: Request to Modify Groundwater Monitoring Program Mitigation Order on Consent No. P-121-07. January 25, 2010
- Hydro Geo Chem, Inc. (HGC). 2008a. Revision 1, Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Concentrator Tailing Storage Area, Cochise County, Arizona. July 3, 2008.
- HGC. 2008b. Fourth Quarter 2008, Groundwater Monitoring Report, Tasks 1.0, 2.2 and 2.3 of Aquifer Characterization Plan Mitigation Order on Consent No. P-121-07, Cochise County, Arizona. October 27, 2008.
- HGC. 2009. Aquifer Characterization Report, Task 4.0 of Aquifer Characterization Plan, Mitigation Order on Consent Docket No. P-121-07, Cochise County, Arizona, Volume I. April 29, 2009.

TABLES

Table 1 **Schedule for Water Quality Sampling and Water Level Monitoring**

Well Name	ADWR 55 Registry No.	Semiannual Sampling	Quarterly Sampling Second Quarter	Annual Sampling Third Quarter	Quarterly Sampling Fourth Quarter
ANDERSON	613396	✓	✓	✓	✓
AWC-02	616586	✓	✓	✓	✓
AWC-03	616585	✓	✓	✓	✓
AWC-04	616584	✓	✓	✓	✓
AWC-05	590620	✓	✓	✓	✓
BANKS 986	647986	✓	✓	✓	✓
BANKS 987	647987	WLO		WLO	
BARTON 919	644919	WLO		WLO	
BF-01	539783			✓	
BIMA	577927	✓	✓	✓	✓
BMO-2008-1G	909474	✓		✓	
BMO-2008-3B	909147	✓		✓	
BMO-2008-4B	910096	✓		✓	
BMO-2008-5B	909653	✓	✓	✓	✓
BMO-2008-5M	909552	✓	✓	✓	✓
BMO-2008-6B	909146	✓	✓	✓	✓
BMO-2008-6M	909019	✓	✓	✓	✓
BMO-2008-7M	908794	✓		✓	
BMO-2008-8B	910097			✓	
BMO-2008-8M	909711	✓		✓	
BMO-2008-9M	909255	✓		✓	
BMO-2008-10GU	909272			✓	
BMO-2008-10GL	909435			✓	
BMO-2008-11G	909434	✓		✓	
BMO-2008-13B	909551			✓	
BMO-2008-13M	909760			✓	
BMO-2010-1M ¹	219957	✓	✓	✓	✓
BMO-2010-2M ¹	219958	✓	✓	✓	✓
BMO-2010-3B ¹	219970	✓	✓	✓	✓
BMO-2010-3M ¹	219969	✓	✓	✓	✓
CHAMBERS	629807	✓	✓	✓	✓
COB MW-1	903992			✓	
COB MW-2	903984	✓		✓	
COB MW-3	906823			✓	
COB WL	593116			✓	
COOPER	623564	√	✓	✓	✓
COOPER C	637069	√	✓	✓	√
DODSON	644927	√	✓	✓	√
DOUGLASS 791	592791	WLO		WLO	
DOUGLASS 792	592792	WLO		WLO	
DURAZO	NR	✓	✓	✓	✓

Table 1 Schedule for Water Quality Sampling and Water Level Monitoring

Well Name	ADWR 55 Registry No.	Semiannual Sampling First Quarter	Sampling Second Quarter	Sampling Sampling Sa	
EAST	599796	✓			✓
EPPELE 641	805641	✓	✓	✓	✓
FLEMING	218386	WLO		WLO	
FRANCO	500101	✓	✓	✓	✓
FULTZ	212447	✓	✓	✓	✓
GARNER 557	558557	WLO		WLO	
GARNER 635	587635	✓	✓	✓	✓
GGOOSE 547	628547	✓		✓	
GOAR RANCH	610695	WLO		WLO	
HOBAN	805290	✓	✓	✓	✓
HOWARD	NR	✓	✓	✓	✓
KEEFER	209744	✓	✓	✓	✓
MCCONNELL 265	539265	✓	✓	✓	✓
METZLER	35-71891	✓	✓	✓	✓
MOORE	538847	✓	✓	✓	✓
NESS	509127	✓		✓	
NOTEMAN	212483	✓	✓	✓	✓
NWC-02	562944	✓	✓	✓	✓
NWC-03	203321	✓	✓	✓	✓
NWC-03 CAP	627684	WLO		WLO	
NWC-04	551849	✓	✓	✓	✓
NWC-06	575700	✓	✓	✓	✓
OSBORN	643436	✓		✓	
PALMER	578819	✓	✓	✓	✓
PANAGAKOS	35-76413			✓	
PARRA	576415	✓	✓	✓	✓
PIONKE	613395	✓	✓	✓	✓
POOL	509518	✓	✓	✓	✓
RAMIREZ	216425	✓	✓	√	✓
RAY	803772	✓	✓	√	✓
ROGERS 596/803	573596	✓	✓	✓	✓
ROGERS E	216018	√	✓	√	√
RUIZ	531770	✓	✓	✓	✓
SCHWARTZ	210865	✓	✓	✓	✓
STEPHENS	808560	WLO		WLO	
SUNBELT	201531	WLO		WLO	
SWAN	NR	✓		✓ ×	
TM-02A	522574	✓		√	
TM-06 MILLER	522695	1		✓	
TM-07	522576	√		✓	
TM-15 MILLER	522699	†		√	
TIVE TO IVILLETY	022000				

Table 1 Schedule for Water Quality Sampling and Water Level Monitoring

Well Name	ADWR 55 Registry No.	Semiannual Sampling First Quarter	Quarterly Sampling Second Quarter	Annual Sampling Third Quarter	Quarterly Sampling Fourth Quarter
TM-16	522578			✓	
TM-19A	522580	✓		✓	
TM-42	562554			✓	
TVI 236	802236			✓	
TVI 713	567713	WLO		WLO	
TVI 875	568875	✓	✓	✓	✓
WEED	544535	✓	✓	✓	✓
WEISKOPF	641802	✓	✓	✓	✓
ZANDER	205126	✓	✓	✓	✓

Notes:

ADWR = Arizona Department of Water Resources

WLO = Water Level Only

¹Well installed third quarter 2010 and will be sampled quarterly for the first year and reevaluated at the end of that year

Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status
ANDERSON	613396	Anderson	Well Inventory	236	Y	Y	Water quality sample collected in October 2010
AWC-02	616586	Arizona Water Company	Plume	330	N	Y	Water quality sample collected in November 2010. Unable to collect water level because well was pumping
AWC-03	616585	Arizona Water Company	Plume	269	N	Y	Water quality sample collected in November 2010. Unable to collect water level because well was pumping
AWC-04	616584	Arizona Water Company	Plume	250	N	Y	Water quality sample collected in November 2010. Unable to collect water level because well was pumping
AWC-05	590620	Arizona Water Company	Plume	1183	N	Υ	Water quality sample collected in November 2010. Unable to collect water level because well was pumping
BANKS 986	647986	Banks	Well Inventory	435	N	Υ	Water quality sample collected in October 2010; unable to collect water level because wellhead is not accessible
BANKS 987	647987	Banks	Well Inventory	339	Y	N	Well identified for water level measurements only
BARTON 919	644919	Barton	Plume	130	N	N	Well not operational; unable to collect water level; unable to contact owner to access property
BF-01	539783	Copper Queen Branch	Plume	400	N	N	Well not scheduled for sampling in the fourth quarter 2010
BIMA	577927	Bisbee Municipal Airport	Plume	465	Υ	Y	Water quality sample collected in October 2010
BMO-2008-1G	909474	Copper Queen Branch	Plume	310	N	N	Well not scheduled for sampling in the fourth quarter 2010
BMO-2008-3B	909147	Copper Queen Branch	Plume	260	N	N	Well not scheduled for sampling in the fourth quarter 2010
BMO-2008-4B	910096	Copper Queen Branch	Plume	610	N	N	Well not scheduled for sampling in the fourth quarter 2010
BMO-2008-5B	909653	Copper Queen Branch	Plume	285	Υ	Υ	Water quality sample collected in October 2010
BMO-2008-5M	909552	Copper Queen Branch	Plume	450	Υ	Υ	Water quality sample collected in October 2010
BMO-2008-6B	909146	Copper Queen Branch	Plume	265	Υ	Υ	Water quality sample collected in October 2010
BMO-2008-6M	909019	Copper Queen Branch	Plume	450	Υ	Υ	Water quality sample collected in October 2010
BMO-2008-7M	908794	Copper Queen Branch	Plume	670	N	N	Well not scheduled for sampling in the fourth quarter 2010
BMO-2008-8B	910097	Copper Queen Branch	Plume	480	N	N	Well not scheduled for sampling in the fourth quarter 2010
BMO-2008-8M	909711	Copper Queen Branch	Plume	1210	N	N	Well not scheduled for sampling in the fourth quarter 2010

						<u> </u>		
Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status	
BMO-2008-9M	909255	Copper Queen Branch	Plume	775	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2008-10GL	909435	Copper Queen Branch	Plume	810	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2008-10GU	909272	Copper Queen Branch	Plume	449	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2008-11G	909434	Copper Queen Branch	Plume	760	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2008-13B	909551	Copper Queen Branch	Plume	474	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2008-13M	909760	Copper Queen Branch	Plume	1030	N	N	Well not scheduled for sampling in the fourth quarter 2010	
BMO-2010-1M	219957	Copper Queen Branch	Plume	540	Υ	Υ	Water quality sample collected in November 2010	
BMO-2010-2M	219958	Copper Queen Branch	Plume	370	Υ	Y	Water quality sample collected in November 2010	
BMO-2010-3B	219970	Copper Queen Branch	Plume	330	Υ	Υ	Water quality sample collected in November 2010	
BMO-2010-3M	219969	Copper Queen Branch	Plume	532	Y	Y	Water quality sample collected in November 2010	
BURKE	212268	Burke	Plume	781	N	N	Well not scheduled for sampling in the fourth quarter 2010	
CHAMBERS	629807	Chambers	Well Inventory	245	N	Υ	Water quality sample collected in October 2010	
COB MW-1	903992	City of Bisbee	Plume	420	N	N	Well not scheduled for sampling in the fourth quarter 2010	
COB MW-2	903984	City of Bisbee	Plume	170	N	N	Well not scheduled for sampling in the fourth quarter 2010	
COB MW-3	906823	City of Bisbee	Plume	269	N	N	Well not scheduled for sampling in the fourth quarter 2010	
COB WL	593116	City of Bisbee	Plume	150	N	N	Well not scheduled for sampling in the fourth quarter 2010	
COLLINS ¹	565260	Collins	Well Inventory	320	N	N	Well not scheduled for sampling in the fourth quarter 2010	
COOPER	623564	Cooper, Teresa	Plume	325	N	Υ	Water quality sample collected in October 2010; unable to collect water level because wellhead is not accessible	
COOPER C	637069	Cooper, Charles	Plume	220	Υ	Υ	Water quality sample collected in October 2010	
DODSON	644927	Dodson	Plume	200	Υ	Υ	Water quality sample collected in October 2010	

Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status
DOUGLASS 791	592791	Douglass	Well Inventory	200	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010
DOUGLASS 792	592792	Douglass	Well Inventory	200	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010
DURAZO	NR	Durazo	Well Inventory	ND	N	Y	Water quality sample collected in October 2010; unable to collect water level because wellhead is not accessible
EAST	599796	East	Well Inventory	125	Υ	Υ	Water quality sample collected in October 2010
EPPELE 641	805641	Eppele	Well Inventory	265	Υ	Υ	Water quality sample collected in October 2010
FLEMING	218386	Fleming	Well Inventory	400	Υ	N	Well indentified for water level measurements only.
FRANCO	500101	Franco	Well Inventory	200	Υ	N	Well not operational.
FULTZ	212447	Fultz	Well Inventory	300	N	Y	Water quality sample collected in October 2010; unable to collect water level due to obstruction in well
GARNER 557	558557	Garner	Plume	300	Y	N	Well identified for water level measurements only
GARNER 635	587635	Garner	Plume	680	Y	Y	Water quality sample collected in October 2010
GGOOSE 546	628546	Galloping Goose Properties	Plume	430	N	N	Well not operational; unable to collect water level due to obstruction
GGOOSE 547	628547	Galloping Goose Properties	Plume	800	N	N	Well not operational; unable to collect water level due to obstruction
GL-03	539782	Copper Queen Branch	Plume	820	N	N	Well not scheduled for sampling in the fourth quarter 2010
GOAR RANCH	610695	Goar	Well Inventory	250	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010
HOBAN	805290	Hoban	Well Inventory	316	Υ	N	Unable to collect water quality sample due to electrical power being switched off
HOWARD	NR	Howard	Well Inventory	200	Y	Y	Water quality sample collected in October 2010
KEEFER	209744	Keefer	Well Inventory	245	Y	Y	Water quality sample collected in October 2010
MCCONNELL 265	539265	McConnell	Well Inventory	216	Y	Y	Water quality sample collected in October 2010
METZLER	35-71891	Metzler	Well Inventory	351	Y	Y	Water quality sample collected in October 2010
MOORE	538847	Moore	Well Inventory	220	N	Y	Water quality sample collected in October 2010; unable to collect water level because wellhead is not accessible

Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status	
NESS	509127	Ness	Well Inventory	812	N	N	Well not scheduled for sampling in the fourth quarter 2010	
NOTEMAN	212483	Noteman	Well Inventory	400	N	Y	Water quality sample collected in October 2010; unable to collect water level due to obstruction in well	
NSD-02	527587	Naco Sanitary District	Water Level	120	N	N	Well identified for water level measurements only. Could not contact well owner for water level measurements	
NSD-03	527586	Naco Sanitary District	Water Level	100	N	N	Well identified for water level measurements only. Could not contact well owner for water level measurements	
NWC-02	562944	Naco Water Company	Plume	312	N	Y	Water quality sample collected in October 2010; unable to collect water level because the well was pumping	
NWC-03	203321	Naco Water Company	Plume	312	N	Y	Water quality sample collected in October 2010; unable to collect water level because the well was pumping	
NWC-03 CAP	627684	Naco Water Company	Plume	179	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010	
NWC-04	551849	Naco Water Company	Well Inventory Sulfate Trend	795	N	Y	Water quality sample collected in October 2010; unable to collect water level because the well was pumping	
NWC-06	575700	Naco Water Company	Well Inventory	410	N	Y	Water quality sample collected in October 2010; unable to collect water level because the well was pumping	
OSBORN	643436	Osborn	Plume	258	N	N	Well not scheduled for sampling in the fourth quarter 2010	
PALMER	578819	Palmer	Well Inventory	220	N	Y	Water quality sample collected in October 2010; unable to collect water level because wellhead is inaccessible	
PANAGAKOS	35-76413	Panagakos	Well Inventory	200	Υ	Y	Water quality sample collected in October 2010	
PARRA	576415	Parra	Plume	355	N	Y	Water quality sample collected in October 2010; unable to collect water level because of obstruction in well	
PIONKE	613395	Pionke	Well Inventory	300	Y	Y	Water quality sample collected in October 2010	
POOL	509518	Pool	Well Inventory	313	Υ	Y	Water quality sample collected in October 2010	
RAMIREZ	216425	Ramirez	Well Inventory	300	Υ	Y	Water quality sample collected in October 2010	
RAY	803772	Ray	Well Inventory	100	Υ	Υ	Water quality sample collected in October 2010	
ROGERS 596	573596	Rogers, Ernest D	Plume	290	Y	N	Well was turned off. The Rogers residence is now using Rogers 803 based on conversations with David Rogers	
ROGERS 803	641803	Rogers, Ernest D	Plume	140	Y	Y	Water quality sample collected in October 2010.	
ROGERS E	216018	Rogers, Ernest M	Well Inventory	290	Y	Y	Water quality sample collected in October 2010	

Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status
RUIZ	531770	Ruiz	Well Inventory	312	N	Y	Water quality sample collected in October 2010. Unable to collect water level due to obstruction in well.
SCHWARTZ	210865	Schwartz	Well Inventory	305	Υ	Υ	Water quality sample collected in October 2010
STEPHENS	808560	Stephens	Well Inventory	NR	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010
SUNBELT	201531	Sunbelt Marketing, Inc.	Well Inventory	380	N	N	Well identified for water level measurements only. Well not scheduled for water level measurements in the fourth quarter 2010
SWAN	NR	Swan	Well Inventory	NR	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-02A	522574	Copper Queen Branch	Plume	925	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-03	522575	Copper Queen Branch	Plume	200	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-06 MILLER	522695	Miller	Plume	200	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-07	522576	Copper Queen Branch	Plume	350	Ν	N	Well not scheduled for sampling in the fourth quarter 2010
TM-15 MILLER	522699	Miller	Well Inventory	325	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-16	522578	Copper Queen Branch	Plume	115	Ν	N	Well not scheduled for sampling in the fourth quarter 2010
TM-19A	522580	Copper Queen Branch	Plume	700	N	N	Well not scheduled for sampling in the fourth quarter 2010
TM-42	562554	Copper Queen Branch	Plume	250	N	N	Well not scheduled for sampling in the fourth quarter 2010
TVI 236	802236	Turquoise Valley, Inc.	Well Inventory	222	N	N	Well not scheduled for sampling in the fourth quarter 2010
TVI 713	567713	Turquoise Valley, Inc.	Well Inventory	200	Υ	N	Well identified for water level measurements only
TVI 875	568875	Turquoise Valley, Inc.	Plume	330	N	Υ	Water quality sample collected in October 2010; unable to collect water level because well head is not accessible
WEED	544535	Weed	Plume	320	N	Y	Water quality sample collected in October 2010; unable to collect water level because well head is not accessible

Well Name	ADWR 55 Registry No.	Owner	Monitoring Purpose	Casing Depth (feet)	Water Level Measured?	Water Sample Collected?	Status
WEISKOPF	641802	Weiskopf	Plume	200	Y	Υ	Water quality sample collected in October 2010
ZANDER	205126	Zander	Well Inventory	280	Y	Y	Water quality sample collected in October 2010

ADWR = Arizona Department of Water Resources

BIMA = Bisbee Municipal Airport

ft amsl = feet above mean sea level

ND = No Data

NR = No Record

35-71891 = ADWR 35 Database

¹ former owner ENGLUND

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		3/20/08	7.25	21.1	1176	431
		5/5/08	7.03	21.8	1231	452
		7/14/08	7.11	21.6	1260	472
		10/15/08	7.10	21.3	1252	475
		1/27/09	7.27	21	965	488
441DED0041	040000	4/14/09	7.12	21.8	1229	534
ANDERSON	613396	7/14/09	7.03	22.2	1372	550
		10/12/09	6.98	21.5	1375	510
		1/27/10	7.93	20.1	1449	523
		4/21/10	7.40	20.7	1439	627
		7/19/10	6.93	24.1	1420	648
		10/19/10	7.03	20.6	1229	416
		1/7/08	ND	ND	ND	14
		3/3/08	ND	ND	ND	16
		5/5/08	ND	ND	ND	13.3
		8/12/08	7.01	22.3	630	14.3
		10/23/08	7.31	23.1	464	15.9
		3/11/09	7.19	21.8	420	15.5
AWC-02	616586	4/22/09	7.17	22.6	430	14.7
		7/22/09	7.24	22.7	444	14.2
		10/21/09	7.19	21.3	468	16.8
		2/3/10	7.44			18.6
		4/23/10	7.56			18.3
		7/20/10	7.27			18.2
		11/4/10	7.72			18.8
		1/7/08	ND			41
		3/3/08	ND			38
		5/5/08	ND			37.3
		8/12/08	7.28			38.8
		10/23/08	7.48			41.8
		3/11/09	7.25			64.2
AWC-03	616585	4/22/09	7.30			42.4
		7/22/09	7.39			41.8
		10/21/09	7.48			50.5
		2/3/10	7.44			42.0
		4/23/10	7.57			44.4
		7/20/10	7.29			46.7
		11/4/10	7.80			46.3
		2/4/08	ND			18
		4/7/08	ND			18
		6/2/08	ND			14.3
		8/12/08	7.08			21.6
		10/23/08	6.91			24
		3/11/09	7.02		19.7 449 19.7 526 23.9 450 21.3 465.9 ND ND ND ND ND ND 22.4 469 21.0 462 21.2 445 21.4 452 22.6 456 21.3 540 19.7 449 19.7 468 23.8 460 20.8 452.3 ND N	27.2
AWC-04	616584	4/22/09	6.93			26.1
		7/22/09	7.13			26.2
		10/21/09	7.00			25.7
		2/3/10	7.35			16.3
		4/23/10	7.14			27.4
		7/20/10	7.02			26.6
		11/4/10	7.41	20.3	593.2	24.0

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/4/08	ND	ND	ND	13
		4/7/08	ND	ND	ND	14
		6/2/08	ND	ND	ND	14.3
		8/12/08	6.74	23.3	425	14.9
		10/23/08	7.45	21.0	422	15.4
		3/11/09	7.31	22.1	398	16.5
AWC-05	590620	6/3/09	7.33	22.0	418	12.1
		7/22/09	7.49	24.4	423	14.1
		10/21/09	7.37	21.1	433	16.5
		2/3/10	7.35	19.3	438	16.3
		4/23/10	7.62	18.9	443	17.6
		7/20/10	7.62	24.2	440	19.1
		11/4/10	7.92	20.7	427.1	18.4
		2/27/08	7.53	21.8	980	44
		5/12/08	7.40	22.1	1021	65.2
		7/21/08	7.43	22.9	1034	82.2
		10/13/08	7.28	21.7	980	53
	647986	1/21/09	7.66	21.6	872	164
BANKS 986		4/8/09	7.56	22.7	933	47
DAINNO 900		7/9/09	7.59	23.1	871	70.9
		10/7/09	7.50	22.2	838	67.7
		2/25/10	7.56	21.1	1020	50.5
		4/20/10	7.71	22.8	1013	53.9
		7/20/10	7.70	23.2	828.3	71.5
		10/20/10	7.60	22.4	948.7	73.4
		3/4/08	6.46	21.9	2745	1320
		5/23/08	6.41	18.3	2698	1450
		8/5/08	6.11	22.4	3095	1330
		11/5/08	6.33	19.9	3027	1490
		2/20/09	6.42	19.2	1477	1330
BF-01	539783	5/6/09	5.98	23.9	2632	1280
		8/17/09	6.21	29.7	2948	1250
		11/4/09	6.24	23.0	2846	1280
		3/1/10	6.34	21.1	2945	1260
		4/7/10	5.83	20.4	1853	1450
		7/6/10	5.93	22.6	1403	1310

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/6/08	6.69	22.2	1335	210
		4/25/2008 ¹	6.37	23.1	1521	190
		5/13/2008 ¹	6.58	22.7	1489	195
		6/23/2008 ¹	6.30	23.3	1572	225
		6/23/08 DUP	6.30	23.3	1572	196
		7/29/2008 ¹	6.44	23.0	1647	204
		8/28/2008 ¹	M	23.0	1776	256
		9/23/2008 ¹	6.29	23.0	1741	296
DIMA	577007	10/22/08	6.41	22.3	1801	285
BIMA	577927	1/20/09	6.40	21.7	1233	190
		1/20/09 DUP	6.40	21.7	1233	200
		4/7/09	6.45	23.4	1436	212
		7/8/09	6.31	23.4	1483	189
		10/5/09	6.34	22.7	1525	233
		1/20/10	6.88	17.0	NA	222
		4/19/10	6.70	21.9	1533	256
		7/12/10	6.70	24.0	1577	273
		10/18/10	6.47	24.3	1702	296
		2/5/08	7.43	20.2	714	206
		4/21/2008 ¹	7.06	21.9	753	201
		5/15/2008 ¹	7.16	22.2	845	211
		6/23/2008 ¹	6.93	21.5	903	193
BLOMMER	633472	7/29/2008 ¹	7.21	22.2	921	203
		8/27/2008 ¹	7.12	22.1	864	189
		9/23/2008 ¹	7.16	22.3	818	193
		10/22/08	7.17	21.3	873	200
		8/27/08	7.09	24.2	808	107
		11/11/08	7.00	20.8	721	143
		2/25/09	7.01	22.0	860	109
		4/28/09	7.04	22.2	762	198
D140 0000 40		8/4/09	7.23	22.8	950	104
BMO-2008-1G	909474	10/27/09	7.11	21.9	922	103
		2/17/10	7.36	20.5	899.3	98.4
		4/15/10	7.04	22.2	711	95.2
		7/7/10	6.91	21.5	640	88.1
		7/7/10 DUP	6.91	21.5	640	87.1
		7/18/08	7.35	23.9	615	106
		11/4/08	7.36	21.4	599	179
		11/4/08 DUP	7.36	21.4	599	177
		2/19/09	7.24	21.4	664	155
		5/11/09	7.23	22.1	631	149
BMO-2008-3B	909147	8/6/09	7.33	21.4	718	151
		8/6/09 DUP	7.33	21.4	718	156
		10/26/09	7.32	21.8	684	153
		3/3/10	7.38	21.4	695	164
		4/8/10	6.47	21.3	585	162
		7/1/10	6.92	21.4	541	157

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		12/11/08	7.34	22.8	374	9.4
		2/18/09	7.17	23.2	370	13.4
		4/30/09	7.33	24.5	376	11.4
		4/30/09 DUP	7.33	24.5	376	11.8
BMO-2008-4B	910096	8/6/09	7.53	24.6	397	11.5
		10/27/09	7.53	23.7	379	11.2
		2/24/10	7.48	21.8	362	9.7
		4/16/10	7.70	23.4	330	9.73
		7/2/10	7.25	23.6	323	10.10
		9/30/08	7.08	22.0	688	193
		2/18/09	7.03	21.5	691	192
		4/27/09	7.32	22.1	605	177
		8/4/09	7.35	22.3	724	174
D140 0000 FD	000050	10/29/09	7.29	21.8	731	181
BMO-2008-5B	909653	10/29/09 DUP	7.29	21.8	731	185
		2/15/10	7.22	21.7	720	185
		4/15/10	7.21	23.0	571	194
		7/7/10	6.94	22.2	551	183
		10/5/10	6.85	22.3	722	201
		10/2/08	7.13	23.6	551	107
		2/18/09	7.06	22.5	562	122
		4/27/09	7.50	22.9	501	111
		8/4/09	7.53	23.1	605	122
		10/29/09	7.35	22.4	610	123
BMO-2008-5M	909552	2/15/10	7.31	22.5	581	123
		4/16/10	7.28	22.6	509	125
		4/16/10 DUP	7.28	22.6	509	124
		7/7/10	7.02	23.5	482	123
		10/5/10	6.81	22.5	602	127
		7/16/08	7.36	24.1	475	53.3
		11/4/08	7.41	21.5	398	60.3
		2/19/09	7.23	21.1	444	54.3
		4/27/09	7.55	21.7	389	52.7
DMO 0000 0D	000440	8/4/09	7.48	23.4	470	48.5
BMO-2008-6B	909146	10/26/09	7.29	22.5	448	48.7
		2/15/10	7.53	21.2	391	33.5
		4/15/10	7.47	21.0	362	37.0
		7/1/10	7.24	22.2	361	40.1
		10/5/10	7.05	21.0	407	37.2
		7/10/08	М	22.1	702	182
		11/4/08	7.33	21.8	621	199
		2/20/09	7.11	22.0	702	193
		4/28/09	7.34	22.4	595	119
D140 6000 017	000010	8/4/09	7.40	23.3	750	189
BMO-2008-6M	909019	10/26/09	7.18	22.4	727	187
		2/15/10	7.29	20.8	733	193
		4/15/10	7.36	20.2	619	208
		7/1/10	7.15	22.0	571	198
		10/5/10	6.87	21.3	720	202

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		7/14/08	7.63	25.2	500	31.4
		11/6/08	7.53	22.6	380	34.5
		2/18/09	7.31	23.3	452	27.6
		5/11/09	7.43	24.4	426	26.0
DMO 0000 7M	000704	8/6/09	7.81	24.1	486	25.1
BMO-2008-7M	908794	10/27/09	7.53	23.0	470	26.1
		2/17/10	7.57	23.4	452	25.4
		2/17/10 DUP	7.57	23.4	452	25.0
		4/15/10	7.52	23.2	415	26.0
		7/6/10	7.28	23.5	391	22.8
		12/5/08	6.47	20.1	2480	1890
		2/19/09	6.19	21.0	2958	1570
		5/5/09	6.18	21.3	2888	1370
		8/10/09	6.42	21.5	2897	1250
BMO-2008-8B	910097	11/9/09	6.33	21.8	2889	1510
		11/9/09 DUP	6.33	21.8	2889	1520
		3/3/10	6.51	20.4	3016	1320
		4/16/10	6.06	21.4	1682	1470
		7/1/10	6.10	21.4	1594	1440
		12/9/08	7.16	23.4	852	197
		2/19/09	7.27	23.5	758	147
		2/19/09 DUP	7.27	23.5	758	149
		5/5/09	7.19	25.1	680	122
BMO-2008-8M	909711	8/10/09	7.49	24.8	673	107
		11/5/09	7.30	25.4	675	104
		3/3/10	7.70	24.1	641	99.5
		4/16/10	7.29	24.5	541	97.0
		7/1/10	6.99	25.0	502	94.7
		8/8/08	7.72	25.7	415	47.3
		11/5/08	7.89	21.4	444	54.4
		2/26/09	7.71	24.5	482	28.8
		5/12/09	7.76	24.8	449	51.7
BMO-2008-9M	909255	8/17/09	7.76	25.6	534	53.4
		11/3/09	7.82	24.9	552	56.9
		3/4/10	8.07	22.4	520	58.6
		4/6/10	6.74	23.8	484	60.1
		7/1/10	7.40	24.6	425	61.0
		8/20/08	6.22	29.5	2924	1320
		11/5/08	6.47	25.3	2573	1290
		2/25/09	6.34	26.8	2646	1180
D. 10 06		5/12/09	6.35	26.2	2402	1120
BMO-2008-10GL	909435	8/11/09	6.52	27.3	2661	1030
		11/2/09	6.52	26.7	2565	1100
		3/4/10	6.76	24.1	2937	1080
		4/8/10	6.03	25.6	1575	1260
		7/2/10	6.16	26.3	1338	1020

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		8/4/08	6.41	23.6	3660	2210
		11/5/08	6.15	20.2	3343	1890
		2/25/09	5.96	22.7	3426	1740
		5/6/09	5.99	23.2	3359	1710
BMO-2008-10GU	909272	8/11/09	6.28	22.5	3348	1690
		11/2/09	6.27	21.8	3157	1730
		3/10/10	6.67	19.1	3951	1700
		4/7/10	5.96	20.4	3210	1510
		7/6/10	5.90	21.8	1610	1670
		8/22/08	8.02	28.2	359	14.2
		11/12/08	7.96	24.2	257	13.9
		2/26/09	7.92	25.1	319	12.3
		4/28/09	8.14	25.5	273	11.8
BMO-2008-11G	909434	8/12/09	8.24	25.3	365	11.2
		11/9/09	8.03	25.5	339	13.9
		3/1/10	8.37	23.2	338	13.0
		4/9/10	6.88	24.5	301	13.0
		7/1/10	6.97	25.4	298	12.3
		10/3/08	6.49	21.6	2180	980
		2/17/09	6.51	20.9	1941	1000
		5/6/09	6.55	22.0	1891	930
BMO-2008-13B	909551	8/5/09	6.63	21.5	2137	950
DIVIO 2000 10D		10/28/09	6.81	19.7	2259	1010
		2/16/10	6.87	20.8	2093	997
		4/14/10	6.38	21.2	1346	974
		7/6/10	6.37	21.8	1208	972
		12/3/08	7.73	24.1	1463	494
		2/17/09	8.21	22.7	1340	441
		4/29/09	8.04	24.8	1126	217
BMO-2008-13M	909760	8/5/09	8.04	25.4	1392	387
DIVIO 2000 13IVI	303700	10/28/09	8.12	21.4	1347	403
		2/16/10	8.07	24.9	1297	375
		4/13/10	8.06	23.2	1130	398
		7/2/10	8.30	23.9	1027	386
BMO-2010-1M	219957	9/9/10	7.82	24.6	727.0	150
DIVIO-2010-11VI	213331	11/11/10	8.68	19.9	570	98.0
DMO 2040 2M	240050	9/15/10	6.66	22.6	2054	915
BMO-2010-2M	219958	11/11/10	6.97	20.6	1800	935
DNO 6010 0D	0465=5	7/29/10	7.48	23.1	420	16.0
BMO-2010-3B	219970	11/10/10	7.43	21.2	370	14.9
		7/31/10	7.73	24.3	390	14.8
BMO-2010-3M	219969	11/10/10	7.66	21.8	340	12.6
20 2010 0111		11/10/10 DUP	7.66	21.8	340	12.7

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/7/08	7.17	23.0	411	29.5
		4/22/08	7.13	27.0	423	26
		8/5/08	7.06	26.8	496	21.9
		10/20/08	7.57	26.0	466	20.5
		2/11/09	7.23	25.0	363	23.9
BURKE	212268	4/28/09	7.16	26.1	369	24.2
		8/19/09	7.36	26.7	486	22.5
		12/16/09	7.28	25.7	488	26
		3/2/10	7.56	12.3	432	23.8
		4/22/10	7.49	16.4	452	24.8
		7/21/10	7.56	25.6	423.7	33.1
		3/6/08	7.73	17.8	408	7.7
		5/5/08	7.15	22.1	421	6
		7/14/08	7.43	23.2	434	5.8
		10/15/08	7.41	22.5	420	4
		1/27/09	7.57	21.5	312	5.3
CHAMBERS	629807	4/14/09	7.42	22.4	384	6.8
OI II WIIDLING	020001	7/15/09	7.83	23.4	414	4.3
		10/13/09	7.41	22.6	410	6.5
		1/26/10	7.31	21.3	416	5.7
		4/23/10	7.47	20.9	427.5	8.34
		7/21/10	7.49	23.1	430	7.75
		10/19/10	8.00	23.0	440	7.04
	_	2/22/08	6.93	21.2	1401	720
	-	5/20/08	6.88	22.0	2050	980
	-	7/30/08	6.88	21.7	1780	730
	-	10/23/08	6.95	21.2	1690	750
	_	2/12/09	6.92	21.1	1313	750
COB MW-1	903992	4/21/09	7.15	22.7	1366	720
		7/22/09	6.94	21.6	1570	680
		7/22/09 DUP	6.94	21.6	1570	730
		10/22/09	6.81	22.3	1582	820
		2/4/10	7.04	21.1	1653	680
		4/20/10	6.92	21.8	1836	783
		7/13/10	7.02	22.3	2004	919
		2/22/08	7.28	20.2	417	41
		5/20/08	7.32	21.2	490	40.5
		7/30/08	7.34	20.8	511	37.6
		10/23/08	7.36 7.35	20.3	498	34.9
		2/12/09		20.2	379	35.6
COB MW-2	903984	4/23/09	7.33	21.8	431	34
		7/22/09	7.36	21.3	483 454	33.5 32.2
		10/22/09	7.24	21.0		
		3/3/10	7.55	19.7	450	33.5
		4/26/10	7.28	21.3	479.6	34.8
		7/13/10 7/13/10 DUP	6.91 6.91	21.2 21.2	479.5 479.5	30.4 30.6

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/28/08	7.39	21.0	416	57.8
		3/27/08	ND	ND	ND	57.7
		4/30/08	ND	ND	ND	37
		5/20/08	7.56	22.3	473	35.8
		7/24/08	ND	ND	ND	64.9
		7/30/08	7.64	22.3	541	67.3
		10/9/08	ND	ND	ND	52.5
COB MW-3	006000	10/23/08	7.43	20.8	507	76.6
COB MM-3	906823	2/12/09	7.35	21.1	432	112
		4/23/09	7.35	22.6	407	43.7
		7/22/09	7.38	21.5	460	52.3
		10/22/09	7.40	21.3	466	74.2
		10/22/09 DUP	7.40	21.3	466	73.9
		3/3/10	7.36	21.1	480	102
		4/26/10	7.35	22.0	497.9	77.6
		7/13/10	7.41	21.7	456.7	46.5
		2/22/08	6.99	20.6	919	90
		3/24/08	ND	ND	ND	98.2
		4/28/08	ND	ND	ND	98.7
		5/20/08	7.30	21.9	1053	98
		7/30/08	7.17	22.0	1098	97.1
		7/30/08	ND	ND	ND	100
		10/15/08	ND	ND	ND	107
COB WL	593116	10/23/08	7.23	21.4	1075	104
COB WL	393110	2/12/09	6.98	20.6	814	94
		4/23/09	7.29	22.2	923	98
		7/22/09	7.17	22.5	1037	97.3
		10/22/09	7.17	22.4	988	96.1
		3/3/10	7.48	21.1	1030	97.1
		4/26/10	7.36	21.9	1038	97.7
		4/26/10 DUP	7.36	21.9	1038	97.9
		7/13/10	7.18	22.3	1013	88.7
		2/12/08	6.88	21.6	1470	520
		5/29/08	7.01	22.0	1459	520
		7/31/08	6.86	21.6	1502	536
		10/20/08	8.44	24.7	1510	518
		2/11/09	6.68	21.4	1147	567
COLLINS	565260	4/21/09	6.92	22.5	1150	499
		7/22/09	7.00	22.4	1413	460
		10/20/09	6.60	21.9	1432	513
		2/2/10	6.98	21.2	1439	471
		4/23/10	6.99	20.6	1472	561
		7/20/10	6.69	25.0	1420	569

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/14/08	7.02	20.8	371	33
		5/14/08	8.08	22.1	419	34.2
		7/31/08	7.81	28.4	455	33.7
		10/20/08	8.44	24.7	448	31.2
		2/11/09	7.32	19.2	333	34.3
COOPER	623564	4/21/09	8.19	24.9	346	33.4
COOPER	023304	7/20/09	8.45	29.8	430	32.3
		10/14/09	7.85	24.6	423	33.6
		2/1/10	7.83	13.6	433	32.4
		4/22/10	7.82	17.9	433	34.5
		7/19/10	7.98	29.3	420	35.0
		10/18/10	7.12	73.1	450	33.1
		3/20/08	6.93	21.3	2081	880
		5/5/08	6.78	22.4	2139	990
		7/15/08	6.86	22.3	2162	1040
		7/15/08 DUP	6.86	22.3	2162	960
		10/16/08	6.80	21.4	2078	1020
		1/27/09	6.92	20.5	1489	950
COOPER C	637069	4/14/09	6.85	21.6	1833	930
		7/14/09	6.75	22.1	1972	910
		10/12/09	6.70	21.8	1858	830
		1/27/10	7.27	19.6	1930	620
		4/22/10	6.76	19.5	1921	884
		7/21/10	6.84	22.9	1761	921
		10/20/10	7.16	20.9	1980	829
		2/20/08	7.61	17.3	857	54
		5/12/08	7.11	21.1	1118	34.2
		7/24/08	7.25	21.6	1233	49.3
		10/13/08	7.15	20.5	1095	56.9
		1/22/09	7.20	20.4	892	51.8
		4/9/09	7.09	21.4	1103	50.1
DODSON	644927	7/8/09	7.18	21.1	1153	55.9
		10/6/09	7.07	21.1	1140	49.3
		1/21/10	7.15	18.9	1227	44.6
		4/19/10	7.46	19.9	1261	48.8
		4/19/10 DUP	7.46	19.9	1261	48.6
	[7/20/10	7.16	22.7	1260	47.5
	<u> </u>	10/18/10	6.43	21.2	1260	49.3
		2/10/09	7.22	18.8	848	386
	[4/20/09	7.37	22.7	901	367
		7/15/09	7.57	22.8	1102	332
DURAZO	NR	10/14/09	7.17	21.9	1048	377
DURAZU	INIX	2/1/10	7.30	21.1	1105	344
		4/26/10	7.22	23.1	1099	388
		7/20/10	7.28	23.0	1070	405
		10/19/10	7.28	21.9	1112	398

	ADWR 55 Registry		рН	Temp	SC	Sulfate,
Well Name	No.	Sample Date	(SU)	(deg C)	(µS/cm)	dissolved
				(209 0)	(µ0,0)	(mg/L)
		2/8/08	7.45	19.9	423	10.6
		5/14/08	7.31	20.9	595	14.8
		7/23/08	7.34	20.8	605	11.8
		10/14/08	7.33	20.3	531	8.9
		1/20/09	7.33	20.0	482	12.5
FAOT	500700	4/8/09	7.32	20.6	555	15.9
EAST	599796	7/13/09	7.33	21.2	613	13.8
		10/8/09	7.29	20.8	593	13.4
		1/25/10	7.08 7.42	19.0	585 616	10.7 14.4
		4/21/10 4/21/10 DUP	7.42	20.5 20.5	616	13.9
		7/14/10 7/14/10	7.42	20.5	577.1	12.1
		10/20/10	7.43	21.2	650	12.1
		3/11/08	7.98	21.4	646	21.7
		5/12/08	7.98	21.7	667	24.7
		7/21/08	7.49	23.9	605	19
		10/14/08	7.56	20.4	642	21.8
EPPELE 641	805641	1/21/09	7.60	21.1	500	22.7
211 222 011	000011	4/8/09	7.56	22.4	538	19.7
		7/9/09	7.43	24.3	550	17.5
		7/20/10	7.58	23.3	529.2	21.1
		10/20/10	7.66	21.0	572.1	17.2
FLEMING	218386	7/15/10	6.98	24.2	1390	573
	2.0000	2/6/08	7.47	19.6	1301	670
		5/5/08	6.93	23.1	1557	680
		7/14/08	7.00	22.7	1586	680
		10/15/08	7.20	20.5	1560	680
		1/22/09	7.19	20.1	1178	740
FRANCO	500101	4/14/09	7.24	23.1	1416	690
		7/13/09	7.30	27.3	1532	670
		10/12/09	7.16	24.2	1493	650
		1/26/10	6.91	18.5	1529	640
		4/23/10	7.43	15.8	1559	699
		7/13/10	7.48	28.6	901.6	188
		2/27/08	6.76	21.1	1827	152
		4/21/2008 ¹	6.74	22.0	1739	137
		5/14/2008 ¹	6.88	22.3	1532	131
		6/23/2008 ¹	6.74	22.0	1788	111
		7/29/2008 ¹	6.74	22.2	1989	152
		8/28/2008 ¹	М	21.6	1889	137
		9/23/2008 ¹	6.82	21.9	1821	137
_ ,,,,		10/22/08	6.80	21.4	1940	145
FULTZ	212447	1/21/09	6.74	21.2	1481	82
		4/9/09	6.78	21.5	1695	138
		7/13/09	7.04	23.4	1452	81
		10/8/09	7.00	21.6	1262	72
		10/8/09 DUP	7.00	21.6	1262	71.8
		1/25/10	7.11	21.8	1282	66.7
		4/20/10	7.32	21.2	1202	68.3
		7/14/10	7.75	22.2	1132	57.0
		10/20/10	7.27	20.5	1091	54.7
GALLANT	502527	2/11/08	7.46	20.2	604	17.9
		7/23/08	7.26	21.2	925	20.9

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/4/08	7.61	22.7	479	37.8
	•	5/5/08	7.26	24.9	468	35.8
	•	7/15/08	7.63	25.6	480	37.4
		10/15/08	7.65	24.1	472	36
		1/28/09	7.69	23.4	368	37.4
0.454.55		4/15/09	7.83	24.1	412	36.9
GARNER 635	587635	7/16/09	7.56	25.1	445	35.7
		10/14/09	7.58	25.2	446	36.1
		2/2/10	7.79	22.8	465	35.1
		4/22/10	7.84	23.7	464.1	36.9
		7/20/10	7.57	25.3	458.2	38.8
		10/19/10	8.23	25.4	510	37.9
		5/21/08	7.08	22.7	856	199
		8/15/08	7.02	24.8	915	178
		10/29/08	7.27	22.6	897	216
GGOOSE 547	628547	2/24/09	7.06	23.8	851	186
		5/14/09	7.15	23.9	743	174
		8/19/09	7.20	23.8	887	175
		11/11/09	7.15	23.1	897	188
		3/4/08	7.43	25.7	417	20.3
		5/22/08	7.06	25.3	647	43.3
		8/4/08	7.10	26.8	673	36.1
		11/12/08	7.21	25.2	478	34.9
		2/26/09	7.05	26.5	603	54.8
GL-03	539782	5/5/09	6.91	28.1	682	43.9
GL-03	333702	8/1/09	7.12	27.4	768	43.1
		11/10/09	6.96	27.0	692	49
		3/2/10	7.36	24.9	693	43.4
		3/2/2010 DUP	7.36	24.9	693	45.1
		4/9/10	6.17	25.6	556	48.1
		7/7/10	6.48	26.3	546	44.4
		2/27/08	6.93	22.1	1359	510
		5/7/08	6.88	22.3	1532	670
		7/14/08	6.88	23.1	1719	690
		10/16/08	6.98	22.4	1624	692
HOBAN	805290	1/28/09	6.82	21.3	1220	580
1105/111	333233	4/15/09	7.07	21.7	1423	700
		7/14/09	6.78	22.6	1551	670
		10/15/09	6.75	22.7	1487	670
		10/15/09 DUP	6.75	22.7	1487	780
		3/2/10	7.12	19.8	1575	580

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved
						(mg/L)
		3/4/08	7.06	20.4	1280	571
		5/8/08	6.95	21.0	1494	673
		7/14/08	7.00	21.1	1566	610
		10/15/08	7.00	20.6	1598	683
		1/28/09	6.82	21.0	1203	640
		1/28/09 DUP	6.82	21.0	1203	640
HOWARD	NR	4/15/09	7.02	21.5	1397	620
		7/15/09	7.16	21.5	1539	640
		10/12/09	6.89	21.4	1414	600
		1/27/10	7.35	20.0	1714	440
		1/27/10 DUP	7.35	20.0	1714	520
		4/21/10	7.16	20.8	1490	710
		7/19/10	6.94	24.6	1350	548
		10/18/10	6.47	21.4	1420	568
		2/6/08	7.70	19.0	378	6.8
		5/6/08	7.19	20.3	512	9
		7/16/08	7.21	21.4	539	8
		10/28/08	7.32	20.1	534	21.2
		1/28/09	7.42	19.5	356	6.1
KEEFER	209744	4/16/09	7.29	20.0	452	7.7
	2007.11	7/14/09	7.35	22.1	533	7
		10/13/09	7.24	20.7	516	8.7
		1/26/10	7.15	18.8	483	7.3
		4/20/10	7.44	20.5	540.9	8.77
		7/15/10	7.50	22.2	535.8	8.84
		10/19/10	6.72	20.2	470	7.89
		2/20/08	7.21	21.1	1435	720
		5/6/08	6.77	21.6	1668	737
		7/15/08	6.91	22.3	1775	700
		10/15/08	6.82	21.3	1686	703
		1/28/09	6.85	21	1274	660
MCCONNELL 265	539265	4/15/09	7.04	21.3	1472	657
MOOOTH TEEL 200	000200	7/15/09	7.01	22.2	1607	662
		10/12/09	6.77	21.7	1594	666
		1/26/10	6.71	21.5	1641	685
		4/22/10	6.95	20.1	1691	811
		7/21/10	6.86	23.5	1560	805
		10/18/10	6.97	22.0	1704	775
		3/5/08	7.27	21.6	1055	317
		5/15/08	7.12	22.8	1051	329
		7/31/08	7.16	22.5	1078	317
		10/20/08	7.24	22.2	1080	305
		10/20/08 DUP	7.24	22.2	1080	326
		2/11/09	7.12	21.3	818	321
METZLER	35-71891	4/20/09	7.22	23.2	845	313
IVIL I ZLLIN	33-7 1031	7/15/09	7.41	22.9	1031	293
		7/15/09 DUP	7.41	22.9	1031	309
		10/14/09	7.1	22.7	989	315
		2/1/10	7.22	21.7	1021	286
		5/18/10	7.56	21.0	1053	330
		7/16/10	7.20	24.1	1007	330
		10/19/10	7.15	22.6	1006	319

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/20/08	7.69	22.2	362	7.1
		5/8/08	7.09	22.4	432	7.5
		7/16/08	7.34	23.0	482	9.8
		10/29/08	7.32	22.4	452	19.2
		1/29/09	7.11	21.7	328	6.6
		4/16/09	7.40	22.1	374	6.4
MOORE	538847	7/15/09	7.44	23.3	439	5.8
		10/13/09	7.36	22.6	429	7.1
		1/26/10	7.54	19.6	423	6.3
		4/22/10	7.47	20.6	433	7.40
		7/15/10	7.44	24.1	431.3	7.54
		7/15/10 DUP	7.44	24.1	431.3	7.11
		10/19/10	6.79	22.1	430	7.14
		7/24/08	7.35	26.5	563	50.2
		10/16/08	7.47	21.4	542	48.9
		1/26/09	7.39	17.2	422	52.3
		5/11/09	7.52	28.8	472	45.9
NESS	509127	8/11/09	7.56	28.7	525	39.8
		11/12/09	7.53	24.5	537	51.3
		2/2/10	7.67	19.7	535	48.7
		4/21/10	7.70	23.5	518.9	42.1
		7/19/10	7.58	28.9	524.7	48.1
		2/5/08	6.70	19.9	1317	310
		5/13/08	6.67	23.0	1445	272
		7/24/08	6.68	24.2	1539	274
		10/23/08	6.57	23.2	1643	356
		1/19/09	6.38	22.9	1098	322
NOTEMAN	212483	4/7/09	6.56	23.8	1375	303
INOTEIVIAIN	212403	7/8/09	6.55	24.6	1405	260
		10/5/09	6.48	24.1	1442	281
		1/20/10	6.79	20.3	1450	289
		4/19/10	6.81	22.4	1446	307
		7/19/10	6.77	24.6	1438	309
		10/18/10	6.08	24.6	1430	280
NSD-02	527587	2/5/08	ND	ND	ND	43
NOD-02	327307	7/7/08	8.02	21.0	609	44
NSD-03	527586	2/5/08	ND	ND	ND	70.7
1102-00	021000	7/7/08	7.64	21.0	570	58.9
		10/27/08	7.47	22.2	438	5.1
		2/12/09	7.58	21.6	330	6.6
	[4/23/09	7.39	23.8	373	6.4
		7/21/09	7.62	23.9	408	5
NWC-02	562944	10/21/09	7.32	22.6	436	6.8
	[2/3/10	7.68	19.6	423	8.5
		4/21/10	7.57	22.1	413	7.26
		7/20/10	7.36	23.7	412.5	6.87
		10/19/10	7.42	22.5	416.2	7.39

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		3/4/08	ND	ND	ND	(Hig/L) 560
		6/9/08	ND ND	ND ND	ND ND	524
		10/27/08	7.07	21.9	1374	489
		2/12/09	7.06	20.2	1023	412
		4/23/09	6.98	21.9	1129	466
NIMO 00	000004	4/23/09 DUP	6.98	21.9	1129	460
NWC-03	203321	7/21/09	7.21	22.9	1194	458
		10/21/09	6.94	21.8	1224	444
		2/3/10	7.24	20.7	1214	444
		4/21/10	7.22	21.6	1178	433
		7/20/10	7.04	22.8	1229	477
		10/19/10	7.22	21.3	1172	432
		3/4/08	ND	ND	ND	240
		6/9/08	ND	ND	ND	231
		10/27/08	7.32	25.0	856	162
		1/22/09	7.23	22.9	688	184
		2/12/09	7.20	19.8	699	181
		2/12/09 DUP	7.20	19.8	699	198
		3/11/09	7.15	23.4	846	197
		4/23/09	7.21	24.1	797	188
		5/28/09	7.01	24.1	933	210
		6/24/09	6.93	25.6	792	169
		7/21/09	7.48	24.3	859	193
		8/19/09	7.12	24.5	906	183
		9/23/09	7.16	23.8	953	202
NWC-04	551849	10/21/09	7.18	24.3	875	191
		11/18/09	7.24	22.9	909	191
		12/16/09	7.28	22.3	926	193
		2/3/10	7.49	22.3	844	167
		3/8/10	7.33	22.5	880	182
		4/21/10	7.34	22.8	913	218
		5/18/10	7.68	25.8	901.3	210
		6/15/10	7.31	24.5	917.5	212
		7/20/10	7.28	28.3	873.2	188
		8/25/10	7.55	24.8	820.9	196
		9/29/10	7.38	24.5	920.2	205
		10/19/10	7.34	23.6	870.2	195
		11/4/10	7.53	23.9	853.2	197
		12/14/10	7.41	23.6	856.8	182
		3/4/08	ND	ND	ND	7.9
		6/9/08	ND	ND	ND	7.2
		10/27/08	7.35	23.3	414	6.4
		2/12/09	7.54	21.8	306	8
		4/23/09	7.30	24.5	354	7.3
NWC-06	575700	7/21/09	7.63	23.5	388	6.4
		10/21/09	7.26	23.2	413	8
		2/3/10 2/3/10 DUP	7.61 7.61	20.5 20.5	404 404	7.5 7.4
		4/21/10	7.54	20.5	387	8.49
		7/20/10	7.33	26.0	388.6	8.59
		10/19/10	7.49	22.7	394.5	8.32

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/25/08	7.35	22.4	508	16.4
		5/13/08	7.22	22.2	576	17.2
		7/22/08	7.24	22.9	618	17.7
		7/22/08 DUP	7.24	22.9	618	17.5
		10/16/08	7.39	22.4	595	15.9
OCDODN	040400	1/20/09	7.33	22.4	469	16
OSBORN	643436	4/7/09	7.25	24.0	542	17
		8/18/09	7.16	24.6	643	17.4
		10/5/09	7.14	22.9	599	17.9
		1/21/10	7.47	19.5	591	15.6
		4/19/10	7.60	21.5	601.9	19.3
		7/12/10	7.69	24.2	594.0	18.4
		2/14/08	7.91	17.5	435	15.9
		5/13/08	7.92	22.9	508	16.6
		7/22/08	7.64	25.8	548	16.2
		10/16/08	7.61	17.0	527	15.9
		1/20/09	7.33	19.4	441	14.3
PALMER	578819	4/8/09	7.65	19.1	475	15.4
IALIVILIX	370019	7/8/09	7.47	27.2	521	14.3
		10/5/09	7.81	22.2	538	16.2
		1/20/10	7.72	11.9	510	13.8
		4/22/10	7.97	13.6	520	16.7
		7/12/10	7.62	30.2	518.8	15.7
		10/18/10	8.13	22.1	511.9	16.5
		4/21/08	6.80	20.5	1228	410
		7/21/08	6.95	21.9	1390	444
		10/13/08	6.86	21.2	1386	480
		10/13/08 DUP	6.86	21.2	1386	500
		1/22/09	6.92	19.7	997	397
		4/9/09	6.81	21.7	1228	431
PANAGAKOS	35-76413	4/9/09 DUP	6.81	21.7	1228	426
		7/9/09	6.89	22.3	1469	490
		10/6/09	6.83	21.1	1328	472
		1/21/10	7.06	18.8	1291	318
		4/20/10	7.25	21.0	1528	608
		7/20/10	6.90	24.0	1560	706
		10/18/10	6.38	22.1	1530	568
	576415	2/11/08	7.08	21.8	1067	360
		5/15/08	7.10	21.8	1200	405
PARRA		7/31/08	7.00	22.4	1248	423
		7/31/08 DUP	7.00	22.4 22.9	1248	404 387
		10/20/08 2/13/09	7.07 7.24	22.9	1246 965	405
		4/20/09	7.24	22.1	965	372
		7/20/09	7.10		1174	375
		10/20/09	6.80	23.9 22.5	1174	388
		2/1/10	7.07	21.5	1197	353
		4/22/10	6.91	20.3	1219	417
		7/14/10	7.13	22.2	1219	403
		7/14/10 DUP	7.13	22.2	1201	391
		10/20/10	7.13	21.4	1270	411

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/6/08	7.53	19.9	910	394
		5/7/08	7.08	21.4	1100	391
		7/17/08	6.99	21.9	1209	420
		10/27/08	7.03	20.8	1175	460
		1/29/09	7.13	19.9	847	385
		4/14/09	7.58	20.7	1053	411
PIONKE	613395	7/13/09	7.35	21.5	1165	472
		10/7/09	7.43	21.1	1100	403
		3/8/10	7.72	18.6	1201	406
		4/26/10	7.22	21.9	1224	438
		7/15/10	7.32	22.3	1158	474
		10/18/10	7.33	21.3	1277	473
		10/18/10 DUP	7.33	21.3	1277	487
		2/20/08	7.95	20.9	497	134
		5/19/08	7.40	22.2	585	122
		7/31/08	7.47	22.3	599	117
		10/21/08	7.51	21.4	598	120
		2/13/09	7.62	20.8	473	141
POOL	E00E40	4/21/09	7.73	22.6	470	124
POOL	509518	7/20/09	7.76	22.9	579	122
		10/20/09	7.22	21.2	577	122
		2/24/10	7.56	22.4	577	110
		4/22/10	7.75	20.2	606.5	130
		7/14/10	7.38	21.7	580.9	117
		10/20/10	7.79	21.3	620	115
POWER	624535	2/12/08	7.11	18.9	428	15.5
		7/22/08	7.10	21.7	795	20.2
	216425	2/4/08	7.47	21.7	408	7.6
		5/6/08	7.19	22.7	405	8.3
		7/17/08	7.32	24.5	439	8.8
		10/27/08	7.41	22.2	412	7.3
		1/29/09	7.24	22.2	301	8.3
RAMIREZ		4/16/09	7.49	22.4	344	7.6
		7/10/09	7.52	23.9	411	6.4
		10/6/09	7.30	23.8	388	8.4
		1/25/10	7.48	22.4	390	7.8
		4/21/10	7.45	22.6	397	9.04
		7/21/10	7.38	25.1	420	8.98
		10/19/10	7.91	23.7	450	10.8

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/15/08	7.30	19.1	1540	159
		4/21/2008 ¹	6.92	21.3	1418	125
		5/13/2008 ¹	7.05	20.9	1418	123
		6/23/2008 ¹	6.87	21.1	1593	130
		7/29/2008 ¹	6.98	21.8	1411	120
		8/28/2008 ¹	M	21.1	1519	129
		9/23/2008 ¹	6.90	22.2	1519	125
DAY	000770	10/22/08	6.96	20.8	1604	145
RAY	803772	1/20/09	6.92	20.6	1355	88
		4/8/09	6.85	21.4	1759	178
		7/9/09	6.93	22.3	1434	126
		10/7/09	6.98	21.3	1288	127
		1/26/10	6.82	20.6	1352	125
		4/20/10	7.14	21.5	1318	134
		7/14/10	7.11	23.8	1313	137
		10/20/10	7.14	19.6	1368	127
		2/7/08	7.45	18.6	601	138
		4/21/2008 ¹	7.32	21.4	552	128
	641803	5/8/2008 ¹	7.14	21.2	622	141
		6/23/2008 ¹	7.06	22.9	660	129
		7/29/2008 ¹	6.78	23.1	339	134
		8/28/2008 ¹	7.18	21.6	635	128
DOCEDE 002		9/23/2008 ¹	7.24	21.9	599	133
ROGERS 803		10/22/08	7.36	21.3	650	144
		2/10/09	7.42	17.9	475	141
		4/29/09	7.52	21.9	506	211
		8/3/09	7.39	24.2	674	150
		7/16/10	7.46	23.9	643.4	169
		10/19/10	7.32	21.1	643.8	154
		10/19/10 DUP	7.32	21.1	643.8	154
	573596	10/19/09	6.89	23.3	1360	590
ROGERS 596		11/5/09	6.79	21.9	1418	540
		2/25/10	6.99	19.6	1603	520
		4/22/10	7.21	18.2	1641	710
	216018	2/4/08	7.40	21.0	435	4.6
		5/7/08	7.18	22.2	415	5.9
ROGERS E		7/17/08	7.28	23.0	446	7.1
		10/27/08	7.38	21.4	434	15.7
		2/10/09	7.51	20.7	322	5.4
		4/16/09	7.48	22.0	361	4.9
		7/13/09	7.34	22.6	420	3.8
		10/6/09	7.31	22.3	407	5.8
		1/25/10	7.52	20.6	414	5.1
		4/21/10	7.44	21.1	421	6.04
		7/21/10	7.37	23.8	430	6.47
	[10/19/10	7.80	22.8	460	5.92

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/5/08	7.73	18.2	445	263
		5/15/08	7.23	25.9	965	265
		7/30/08	6.99	22.1	999	243
		10/20/08	7.04	22.0	995	238
		2/12/09	6.94	20.9	748	254
RUIZ	531770	4/21/09	7.18	22.3	759	227
KUIZ	551770	8/3/09	7.05	22.9	1029	221
		10/28/09	7.09	20.6	920	227
		2/1/10	7.08	20.9	934	236
		4/26/10	7.01	22.5	920.1	240
		7/20/10	7.08	22.5	880	240
		10/20/10	7.52	20.7	970	231
		2/8/08	7.52	21.5	506	158
	[4/21/2008 ¹	7.23	21.7	563	122
		5/19/2008 ¹	7.38	22.4	629	130
		6/23/2008 ¹	7.02	22.1	674	129
		7/29/2008 ¹	7.25	22.4	955	245
		8/28/2008 ¹	М	22.3	669	131
		9/23/2008 ¹	7.27	22.2	607	124
	210865	10/22/2008 ¹	7.31	22.0	653	135
		11/19/2008 ¹	7.38	21.1	612	140
SCHWARTZ		12/17/2008 ¹	6.78	21.6	472	144
001111111111111111111111111111111111111		1/29/2009 ¹	7.08	22.0	475	124
		2/23/2009 ¹	7.33	22.1	610	123
		4/17/09	7.46	22.2	520	120
		7/10/09	7.52	22.8	651	116
		7/10/09 DUP	7.52	22.8	651	117
		10/6/09	7.27	22.5	613	120
		1/22/10	7.79	19.5	664	133
		4/21/10	7.50	20.9	638	129
		7/21/10	7.43	22.0	650	134
		10/19/10	7.76	21.2	710	147
SRC	211345	4/23/08	7.57	25.8	380	19
		8/5/08	7.40	27.2	452	15.4
	NR	2/13/08	7.28	20.7	467	24.1
		5/14/08	7.24	21.2	479	23.7
		7/24/08	7.35	22.4	506	18
		10/16/08	7.32	20.7	488	19
01		1/20/09	7.05	20.4	391	19.8
SWAN		4/7/09	7.21	21.5	447	19.9
		7/8/09	7.18	23.1	473	18.5
		10/5/09	7.18	21.4	496	19.7
		1/21/10	7.49	19.5	501	18.4
		4/21/10	7.42	20.3	512.1	20.9
		7/19/10	7.13	23.8	518.6	22.2

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		3/4/08	8.67	22.6	302	12.3
		5/23/08	7.75	22.9	321	14.7
		8/15/08	7.84	26.4	369	14.4
		10/30/08	8.07	23.9	375	21.9
		2/24/09	8.10	24.8	340	20.3
		5/6/09	8.06	26.7	320	18.7
TM-02A	522574	8/12/09	8.34	26.9	398	20
		11/4/09	8.16	26.3	381	21.8
		3/10/10	8.13	25.2	351	21.4
		3/10/10 DUP	8.13	25.2	351	21.3
		4/6/10	6.96	24.6	363	25.6
		7/6/10	7.38	24.6	343	22.1
		5/20/08	7.51	22.2	778	110
		8/6/08	7.08	21.6	828	97
		11/12/08	7.47	20.5	590	128
		2/26/09	7.21	21.8	737	107
T14.00	500575	2/26/09 DUP	7.21	21.8	737	102
TM-03	522575	5/13/09	7.47	22.2	695	109
		8/18/09	7.48	22.4	822	98
		11/10/09	7.55	21.8	761	106
		3/2/10	7.56	21.6	748	99
		4/14/10	7.55	20.6	635	103
		7/7/10	7.19	21.4	566	103
		2/27/08	7.44	19.6	457	13.9
		5/20/08	7.50	20.7	506	32.7
		8/4/08	7.41	20.7	529	31.3
		10/29/08	7.55	20.2	531	34.5
TM-06 MILLER	E2260E	2/26/09	7.18	20.4	574	32.7
TIVI-UO IVIILLER	522695	5/13/09	7.35	20.9	465	30.6
		8/18/09 8/18/09 DUP	7.50 7.50	20.9 20.9	560 560	30.9 29.9
ı		11/12/09	7.53	20.9	530	31.1
		4/14/10	7.35	19.4	461	29.0
1		7/2/10	7.33	20.1	438	29.8
		3/6/08	7.54	20.8	726	22.5
		5/22/08	6.96	20.1	385	22.9
		8/6/08	7.04	22.8	519	22.2
		11/4/08	7.76	20.6	347	31.2
		2/20/09	7.77	19.9	376	22.5
TM-07	522576	5/13/09	7.30	22.9	559	130
-		8/17/09	7.60	22.6	442	134
		11/3/09	7.85	21.8	441	134
		3/2/10	7.67	21.6	422	124
1		5/25/10	7.77	21.2	398	42.6
		7/6/10	7.58	22.0	350	44.7

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/13/08	7.63	24.1	511	24.1
TM-08 SWAN	522817	5/14/08	7.44	24.4	480	12.6
		7/23/08	7.76	28.1	522	12.6
		2/27/08	7.66	21.9	344	14
		5/23/08	7.54	22.1	371	14.4
		8/5/08	7.42	23.3	413	13.7
		10/28/08	7.63	22.6	387	18.6
		10/28/08 DUP	7.63	22.6	387	18.8
TM-15 MILLER	522699	2/26/09	7.57	22.0	373	14.6
TIVI-13 WILLER	522099	5/13/09	7.61	23.1	344	13.7
		8/17/09	7.73	23.2	398	14.2
		11/3/09	7.73	23.4	414	14.8
		2/24/10	7.66	22.8	381	14.4
		4/27/10	7.71	23.0	383.6	14.9
		7/20/10	7.77	23.0	324	14.3
		3/5/08	7.17	20.6	1351	497
		5/22/08	7.05	20.5	1304	522
		8/6/08	6.67	20.9	1410	466
		11/5/08	7.14	19.8	1162	547
		2/20/09	6.90	21.1	1292	492
TM-16	522578	5/13/09	6.93	21.1	1179	484
		8/19/09	7.08	21.2	1354	468
		11/10/09	7.02	21.0	1310	505
		3/2/10	7.13	20.4	1313	451
		4/14/10	6.90	19.9	987	484
		7/2/10	6.81	20.8	858	474
		3/6/08	8.02	22.2	240	56.1
		5/22/08	7.36	24.0	501	64.5
		8/6/08	7.32	22.6	494	55.3
		11/18/08	7.79	24.3	365	66.3
		3/3/09	7.41	24.5	489	66.2
TM-19A	522581	4/22/09	7.44	24.3	494	62.5
		8/12/09	7.61	24.4	554	61.3
		11/4/09	7.47	24.2	522	63
		3/10/10	7.54	22.9	511	60.6
		4/9/10	6.49	23.0	435	66.5
		7/7/10	6.93	23.8	428	63.2
		3/5/08	7.10	20.8	1342	482
		5/22/08	7.05	21.4	1270	483
		8/6/08	6.69	22.0	1388	467
		11/6/08	6.90	21.0	1025	477
		2/18/09	6.72	22.3	1245	429
TM 40	E60E54	5/7/09	6.88	24.5	1155	430
TM-42	562554	5/7/09 DUP	6.88	24.5	1155	445
		8/18/09	7.04	24.4	1336	428
		11/3/09	7.07	23.1	1266	430
		2/24/10	7.13	22.7	1236	390
		4/19/10	6.87	21.5	985	444
		7/2/10	6.81	23.9	827	407
TM 40	F04700	3/3/08	8.57	21.0	341	2.1
TM-43	564729	8/4/08	8.14	25.7	436	<5

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		3/3/08	6.17	19.9	2788	1420
		8/4/08	6.03	21.6	3149	1320
TM-43A	564726	3/3/08	6.79	20.6	514	0.7
		8/5/08	6.89	21.0	507	31.8
		8/5/08 DUP	6.89	21.0	507	32.5
		3/20/08	7.48	20.0	488	31.3
		5/7/08	7.13	20.4	494	32.6
		7/15/08	7.39	21.9	532	37.6
		10/15/08	7.45	22.3	490	36.6
		2/11/09	7.32	20.1	391	27.6
TVI 236	802236	4/17/09	7.36	19.3	418	28.1
1 11 230	002230	4/17/09 DUP	7.36	19.3	418	28.3
		7/21/09	7.59	22.9	484	31.3
		10/19/09	7.31	22.1	513	33.2
		2/2/10	7.39	20.4	497	26
		4/23/10	7.46	20.0	504.6	30.9
		7/15/10	7.37	21.5	499.4	39.3
		2/21/08	7.28	21.1	739	244
		5/7/08	7.09	21.2	833	250
		7/15/08	7.27	22.4	925	274
		10/15/08	7.26	22.1	878	245
		2/11/09	7.20	20.7	738	312
TVI 875	568875	4/17/09	7.31	21.5	690	251
1 1 1 0 7 3	300073	7/21/09	7.47	22.2	812	236
		10/19/09	7.23	21.9	822	247
		2/2/10	7.32	20.8	939	250
		4/23/10	7.34	20.2	930.4	294
		7/15/10	7.46	21.8	842.5	262
		10/20/10	7.79	21.9	890	242
WALKER	200393	2/13/08	7.05	20.2	650	20
VVALNLIN	200333	7/23/08	7.25	20.7	740	45.4
		2/14/08	7.74	21.7	323	11.1
	[5/15/08	7.22	22.7	365	12.6
	[7/30/08	7.42	32.0	407	11.5
	[10/20/08	8.10	31.6	405	10.2
	[2/13/09	7.66	21.0	303	12.6
	[4/22/09	7.46	22.2	368	11.6
WEED	544535	7/16/09	7.50	21.9	365	10.8
		10/20/09	7.34	21.6	381	12.7
	[2/1/10	7.60	20.8	382	12.2
		4/26/10	7.69	22.1	366	13.4
		7/21/10	7.36	22.1	354.9	13.6
	[7/21/10 DUP	7.36	22.1	354.9	13.5
		10/19/10	7.63	21.2	378.8	11.7

Well Name	ADWR 55 Registry No.	Sample Date	pH (SU)	Temp (deg C)	SC (µS/cm)	Sulfate, dissolved (mg/L)
		2/15/08	7.48	20.0	1072	500
		5/7/08	7.10	21.8	1251	483
		7/16/08	7.07	22.2	1399	560
		10/28/08	6.98	20.8	1401	602
		1/29/09	6.79	20.7	1014	503
		4/15/09	7.53	21.1	1164	503
WEISKOPF	641802	7/15/09	7.84	22.1	1317	486
		10/15/09	6.89	21.4	1216	484
		2/2/10	7.22	20.4	1319	451
		4/22/10	7.30	19.3	1329	572
		7/19/10	7.06	23.1	1330	573
		10/20/10	7.64	21.6	1360	515
		10/20/10 DUP	7.64	21.6	1360	529
		2/4/08	7.24	19.7	392	5.7
		5/6/08	7.26	21.2	404	6.3
		7/16/08	6.92	22.9	441	6.9
		10/28/08	7.40	21.2	415	15
		2/10/09	7.50	20.4	317	6
ZANDER	205126	4/16/09	7.47	21.7	352	5.5
ZANDER	203120	7/14/09	7.36	22.9	418	4.5
		10/13/09	7.41	21.7	407	6.3
		1/26/10	7.49	20.3	411	5.7
		4/2/10	7.55	20.0	416	6.70
		7/21/10	7.38	22.7	388.2	6.78
		10/19/10	6.78	21.3	430	6.56

deg C = degrees Celsius

M = pH Meter Malfunction

NA = Not Analyzed

NR = No Record

ND = No Data

SC = Specific Conductance

SU = Standard Units

μS/cm = microsiemens per centimeter

¹ Verified drinking water supply well, sample collected for sulfate trend analysis and interim action evaluation

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					3/20/08	145.46	4434.88
					5/5/08	145.84	4434.50
					7/14/08	146.16	4434.18
					10/15/08	146.21	4434.13
					1/27/09	145.97	4434.37
ANDERSON	613396	601134.729	3468816.065	4580.34	4/14/09	146.21	4434.13
ANDERSON	613396	601134.729	3400010.000	4560.34	7/14/09	146.88	4433.46
					10/12/09	147.31	4433.03
					1/27/10	147.31	4433.03
					4/21/10	147.57	4432.77
					7/19/10	148.34	4432.00
					10/19/10	147.75	4432.59
					8/27/08	121.12	4426.52
					4/8/08 ²	116	4431.64
A1A/O 00	040500	500007.044	0.4005.40.057	45 47 04	10/23/08 ³	115	4432.64
AWC-02	616586	598907.911	3468549.357	4547.64	4/22/09 ³	118	4429.64
					10/9/09 ³	117	4430.64
					4/23/10 ³	119	4428.64
					8/27/08	119.40	4420.12
	616585	599090.322	3468681.898		4/8/2008 ²	112	4427.52
AVA/C 02				4539.52	10/23/08 ³	106	4433.52
AWC-03					4/22/09 ³	114	4425.52
					10/9/09 ³	116	4423.52
					4/23/10 ³	116	4423.52
		598949.929	3468717.084	4540.48	8/18/08	112.56	4427.92
					4/8/2008 ²	108	4432.48
AWC-04	616504				10/23/08 ³	111.31	4429.17
AVVC-04	616584				4/22/09 ³	110	4430.48
					10/9/09 ³	110	4430.48
					4/23/10 ³	109	4431.48
					8/27/08	299.65	4242.86
					4/8/08	284	4258.51
					10/23/08	284	4258.51
AWC-05	590620	599269.904	3468541.692	4542.51	4/22/09	286	4256.51
					6/3/09	125	4417.51
					10/9/09 ³	289	4253.51
					4/23/10 ³	278	4264.51
					2/27/08	208.00	4440.18
					5/12/08	216.30	4431.88
					7/21/08	228.95	4419.23
					10/13/08	228.20	4419.98
					1/21/09	206.64	4441.54
BANKS 987	647987	606981.921	3469206.175	4648.18	4/8/09	205.50	4442.68
2	3007	3000011021	3.00200.170	.5.0.10	7/9/09	235.68	4412.50
					10/7/09	236.71	4411.47
					2/25/10	216.98	4431.20
					4/20/10	219.35	4428.83
					7/20/10	235.60	4412.58
					10/20/10	230.24	4417.94

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					5/12/08	113.71	4578.65
	644919				7/23/08	113.56	4578.80
BARTON 919		000040.050	2400070 000	4692.36	10/16/08	113.20	4579.16
DARTON 919		606243.850	3469076.689	4692.36	3/11/09	112.92	4579.44
					4/10/09	112.89	4579.47
					7/7/09	112.86	4579.50
					3/4/08	348.99	4486.24
					5/23/08	348.80	4486.43
					8/5/08	348.66	4486.57
BF-01					11/5/08	348.94	4486.29
					2/20/09	348.78	4486.45
	539783	604169.077	3472151.593	4835.23	5/6/09	348.73	4486.50
					8/17/09	348.73	4486.50
					11/4/09	348.65	4486.58
					3/1/10	348.84	4486.39
					4/7/10	348.70	4486.53
					7/6/10	348.69	4486.54
					5/13/08	367.31	4434.74
	577927	606001.245			8/18/08	370.24	4431.81
			3471852.804	4802.05	10/23/08	353.96	4448.09
					1/20/09	353.07	4448.98
BIMA					4/7/09	357.76	4444.29
DIIVIA					7/8/09	365.44	4436.61
					10/5/09	370.11	4431.94
					4/19/10	382.25	4419.80
					7/21/10	386.89	4415.16
					10/18/10	387.39	4414.66
					8/27/08	62.05	4743.05
					11/11/08	60.95	4744.15
					2/25/09	61.43	4743.67
					4/28/09	62.01	4743.09
BMO-2008-1G	909474	606467.681	3471723.644	4805.10	8/4/09	62.96	4742.14
					10/27/09	63.61	4741.49
					2/17/10	64.51	4740.59
					4/15/10	65.05	4740.05
					7/7/10	65.83	4739.27
					7/18/08	138.05	4445.92
					11/4/08	137.95	4446.02
					2/19/09	138.19	4445.78
					5/11/09	138.46	4445.51
BMO-2008-3B	909147	602012.923	3467919.582	4583.97	8/6/09	139.02	4444.95
					10/26/09	139.60	4444.37
			.		3/3/10	140.03	4443.94
					4/8/10	140.07	4443.90
					7/1/10	140.70	4443.27

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					12/11/08	130.77	4442.40
					2/18/09	130.58	4442.59
					4/30/09	131.24	4441.93
D140 0000 4D	040000	004000 405	0.4000000.400	4570.47	8/6/09	131.96	4441.21
BMO-2008-4B	910096	601099.405	3468383.430	4573.17	10/27/09	132.04	4441.13
					2/24/10	131.82	4441.35
					4/16/10	132.65	4440.52
					7/2/10	133.20	4439.97
					9/30/08	145.10	4440.00
					2/18/09	144.35	4440.75
					4/27/09	144.78	4440.32
BMO-2008-5B 909					8/4/09	145.36	4439.74
	909653	600438.159	3468994.715	4585.10	10/29/09	145.88	4439.22
					2/15/10	145.42	4439.68
					4/15/10	145.80	4439.30
					7/7/10	146.59	4438.51
					10/5/10	147.00	4438.10
					10/2/08	146.65	4438.37
					2/18/09	145.97	4439.05
		600445.071			4/27/09	146.46	4438.56
					8/4/09	147.13	4437.89
BMO-2008-5M	909552		3468994.282	4585.02	10/29/09	147.68	4437.34
					2/15/10	147.07	4437.95
					4/16/10	147.34	4437.68
					7/7/10	148.28	4436.74
					10/5/10	148.68	4436.34
					7/16/08	190.13	4437.31
					11/4/08	190.23	4437.21
					2/19/09	189.71	4437.73
					4/27/09	189.99	4437.45
BMO-2008-6B	909146	600366.523	3469820.644	4627.44	8/4/09	190.80	4436.64
DIVIO-2000-0B	909140	000300.323	3409020.044	4027.44	10/26/09	191.04	4436.40
					2/15/10	190.82	4436.62
					4/15/10	190.75	4436.69
					7/1/10	191.43	4436.01
					10/5/10	192.50	4434.94
					7/10/08	191.63	4435.27
					11/4/08	190.25	4436.65
					2/20/09	190.70	4436.20
					4/28/09	190.98	4435.92
BMO-2008-6M	909019	600367.943	3469813.885	4626.90	8/4/09	191.77	4435.13
DIVIO-2000-01VI	303013	000001.843	0409010.000	4020.30	10/26/09	192.14	4434.76
					2/15/10	191.78	4435.12
					4/15/10	191.64	4435.26
					7/1/10	192.53	4434.37
					10/5/10	192.96	4433.94

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					7/14/08	238.31	4450.02
					11/6/08	239.69	4448.64
					2/18/09	238.90	4449.43
					5/11/09	239.03	4449.30
BMO-2008-7M	908794	603099.165	3470029.283	4688.33	8/6/09	239.17	4449.16
					10/27/09	239.55	4448.78
					2/17/10	239.98	4448.35
					4/15/10	240.13	4448.20
					7/6/10	240.28	4448.05
					12/5/08	297.94	4455.31
					2/19/09	297.63	4455.62
					5/5/09	297.37	4455.88
BMO-2008-8B	910097	604171.347	3471141.719	4753.25	8/10/09	297.53	4455.72
					11/9/09	297.85	4455.40
					3/3/10	298.37	4454.88
					4/16/10	298.46	4454.79
					7/1/10	298.64	4454.61
					12/9/08	299.79	4452.66
		604167.912			2/19/09	298.32	4454.13
			3471127.902		5/5/09	298.27	4454.18
BMO-2008-8M	909711			4752.45	8/10/09	298.57	4453.88
					11/5/09	298.81	4453.64
					3/3/10	299.18 299.42	4453.27 4453.03
					4/16/10 7/1/10	299.42	
		604668.669	3471121.675	4762.61	8/8/08	287.17	4452.75 4475.44
					11/5/08	287.65	4474.96
					2/26/09	285.65	4476.96
					5/12/09	285.28	4477.33
BMO-2008-9M	909255				8/17/09	286.09	4476.52
Bino 2000 0iii	000200				11/3/09	286.55	4476.06
					3/4/10	287.45	4475.16
					4/6/10	287.81	4474.80
					7/1/10	288.26	4474.35
					8/20/08	521.75	4270.46
					11/5/08	520.50	4271.71
					2/25/09	516.72	4275.49
					5/12/09	514.68	4277.53
BMO-2008-10GL	909435	605264.072	3471702.043	4792.21	8/11/09	513.23	4278.98
					11/2/09	509.43	4282.78
					3/4/10	510.88	4281.33
					4/8/10	506.31	4285.90
					7/2/10	511.80	4280.41
					8/4/08	299.28	4494.17
					11/5/08	295.89	4497.56
					2/25/09	289.84	4503.61
					5/6/09	289.35	4504.10
BMO-2008-10GU	909272	605267.551	3471731.866	4793.45	8/11/09	289.09	4504.36
					11/2/09	289.77	4503.68
					3/10/10	289.58	4503.87
					4/7/10	289.5	4503.95
					7/6/10	288.93	4504.52

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					8/22/08	577.76	4266.91
					11/12/08	576.80	4267.87
					2/26/09	575.91	4268.76
					4/8/09	575.46	4269.21
BMO-2008-11G	909434	603800.995	3472626.482	4844.67	8/12/09	574.84	4269.83
					11/9/09	573.41	4271.26
					3/1/10	573.68	4270.99
					4/9/10	573.56	4271.11
					7/1/10	572.97	4271.70
					10/3/08	206.42	4442.79
					2/17/09	206.11	4443.10
					5/6/09	206.32	4442.89
BMO-2008-13B	909551	601657.612	3470076.358	4649.21	8/5/09	206.79	4442.42
20 2000 102		00.000.2	0 00. 0.000	.0.0.2.	10/28/09	207.08	4442.13
					2/16/10	207.26	4441.95
					4/14/10	207.27	4441.94
					7/6/10	207.68	4441.53
					12/3/08	206.00	4441.15
	909760	601650.495			2/17/09	208.74	4438.41
					4/29/09	208.53	4438.62
BMO-2008-13M			3470040.455	4647.15	8/5/09	208.85	4438.30
DIVIO 2000 13W				4647.15	10/28/09	208.91	4438.24
					2/16/10	209.16	4437.99
					4/13/10	209.20	4437.95
					7/2/10	209.30	4437.85
BMO-2010-1M	219957	605581.263	3469935.750	4718.55	9/7/10	224.13	4494.42
DIVIO 2010 TIVI	210007	005561.205			11/10/10	222.97	4495.58
BMO-2010-2M	219958	605685.549	3470564.646	4746.16	9/7/10	264.13	4482.03
DIVIO 2010 ZIVI	210000	000000:040	047 0004.040	4740.10	11/11/10	263.94	4482.22
BMO-2010-3B	219970	599977.962	3468347.363	4550.59	7/28/10	115.38	4435.21
BINIO 2010 OB	210070	000011.002	0 1000 11 1000	1000.00	11/10/10	115.80	4434.79
BMO-2010-3M	219969	599970.801	3468353.543	4550.53	7/30/10	118.63	4431.90
BINIO 2010 OIVI	210000	000070.001	0400000.040	4000.00	11/10/10	118.75	4431.78
					4/22/08	606.55	4249.75
					8/5/08	605.86	4250.44
BURKE	212268	602230.087	3473029.816	4856.30	10/28/08	604.88	4251.42
]		002200.001	0.1.00201010	.000.00	2/19/09	603.91	4252.39
					4/28/09	603.70	4252.60
					8/19/09	602.66	4253.64
					2/22/08	232.47	4450.79
					5/20/08	233.12	4450.14
					7/30/08	233.37	4449.89
					10/23/08	233.62	4449.64
					2/12/09	234.05	4449.21
COB MW-1	903992	603153.259	3469889.889	4683.26	4/21/09	234.99	4448.27
					7/22/09	234.34	4448.92
					10/22/09	234.69	4448.57
					2/4/10	235.15	4448.11
					4/20/10	235.47	4447.79
					7/13/10	235.68	4447.58

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/22/08	122.85	4443.36
					5/20/08	123.00	4443.21
					7/30/08	123.53	4442.68
					10/23/08	124.02	4442.19
					2/12/09	123.39	4442.82
COB MW-2	903984	600973.257	3468114.836	4566.21	4/23/09	124.16	4442.05
					7/22/09	124.91	4441.30
					10/22/09	125.33	4440.88
					3/3/10	124.93	4441.28
					4/26/10	125.47	4440.74
					7/13/10	126.54	4439.67
					2/28/08	120.84	4417.79
					5/20/08	125.00	4413.63
					7/30/08	118.50	4420.13
					10/23/08	117.93	4420.70
	906823	599169.225			2/12/09	110.91	4427.72
COB MW-3			3468726.000	4538.63	4/23/09	125.13	4413.50
					7/22/09	124.09	4414.54
					10/22/09	118.03	4420.60
					3/3/10	120.14	4418.49
					4/26/10	123.12	4415.51
					7/13/10	128.60	4410.03
					2/22/08	56.50	4775.56
					5/20/08	57.50	4774.56
					7/30/08	58.64	4773.42
					10/23/08	58.76	4773.30
					2/12/09	58.89	4773.17
COB WL	593116	606357.506	3472502.012	4832.06	4/23/09	59.73	4772.33
					7/22/09	61.27	4770.79
					10/22/09	62.82	4769.24
					3/3/10	65.24	4766.82
					4/26/10	66.13	4765.93
					7/13/10	67.52	4764.54
					2/12/08	289.47	4444.25
					5/29/08	288.53	4445.19
					7/31/08	290.08	4443.64
					10/20/08	290.15	4443.57
COLLINS	565260	602551.286	3471341.335	4733.72	4/21/09	290.66	4443.06
COLLING	303200	002001.200	0471041.000	7100.12	7/20/09	290.78	4442.94
					10/20/09	290.52	4443.20
				-	2/2/10	291.64	4442.08
					4/23/10	291.96	4441.76
					7/20/10	292.21	4441.51

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					3/4/08	155.08	4439.98
					5/5/08	155.34	4439.72
					7/15/08	156.01	4439.05
					10/16/08	155.85	4439.21
					1/27/09	155.62	4439.44
COOPER C	637069	601349.987	3468913.011	4595.06	4/14/09	155.86	4439.20
COOPERC	637069	601349.967	3400913.011	4595.06	7/14/09	156.50	4438.56
					10/12/09	156.89	4438.17
					1/27/10	157.03	4438.03
					4/22/10	157.31	4437.75
					7/21/10	158.00	4437.06
					10/20/10	158.41	4436.65
					5/12/08	81.38	4604.96
					7/24/08	82.20	4604.14
					10/13/08	81.82	4604.52
	644927				1/22/09	82.33	4604.01
		605594.560			4/9/09	82.84	4603.50
DODSON			3469063.772	4686.34	7/8/09	86.88	4599.46
					10/6/09	87.27	4599.07
					1/21/10	88.54	4597.80
					4/19/10	89.53	4596.81
					7/20/10	90.79	4595.55
					10/18/10	90.33	4596.01
					2/13/08	22.11	4681.16
					5/13/08	24.60	4678.67
					7/22/08	27.00	4676.27
					10/16/08	23.60	4679.67
					1/19/09	26.51	4676.76
DOUGLASS 791	592791	607632.993	3470222.677	4703.27	4/8/09	28.53	4674.74
					7/7/09	31.04	4672.23
					10/5/09	31.49	4671.78
					1/21/10	34.55	4668.72
					4/19/10	36.40	4666.87
	<u> </u>				7/12/10	36.74	4666.53
					2/13/08	87.76	4593.97
					5/13/08	87.21	4594.52
					7/22/08	86.90	4594.83
					10/16/08	86.45	4595.28
					1/20/09	86.26	4595.47
DOUGLASS 792	592792	607607.541	3469829.115	4681.73	4/8/09	86.04	4595.69
					7/7/09	86.16	4595.57
					10/5/09	86.19	4595.54
					1/21/10	86.45	4595.28
					4/19/10	87.19	4594.54
					7/12/10	87.55	4594.18

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/8/08	50.20	4575.81
					5/14/08	52.45	4573.56
					7/23/08	52.16	4573.85
					10/14/08	52.19	4573.82
					1/20/09	50.52	4575.49
E 4 O E	500700	007070 005	0.400740.045	1000.01	4/8/09	51.91	4574.10
EAST	599796	607076.365	3468712.215	4626.01	7/13/09	56.93	4569.08
					10/8/09	60.95	4565.06
					1/25/10	59.35	4566.66
					4/21/10	58.88	4567.13
					7/14/10	61.86	4564.15
					10/20/10	61.20	4564.81
					3/11/08	29.52	4613.34
					5/12/08	30.64	4612.22
					7/21/08	25.59	4617.27
					10/14/08	24.53	4618.33
EDDELE C44	005044	607165.354	3469229.942	4040.00	1/21/09	27.35	4615.51
EPPELE 641	805641	607165.354	3469229.942	4642.86	4/8/09	29.08	4613.78
					7/9/09	31.51	4611.35
					10/7/09	29.92	4612.94
					7/20/10	50.38	4592.48
					10/20/10	48.88	4593.98
		605565.701	3469342.523		2/18/09	299.30	4394.38
					4/8/09	301.81	4391.87
				4693.68	7/7/09	304.60	4389.08
FLEMING	218386				10/6/09	307.84	4385.84
FLEMING	210300				1/21/10	311.73	4381.95
					4/20/10	315.26	4378.42
					7/15/10	318.32	4375.36
					11/4/10	349.62	4344.06
					10/22/08	40.59	4602.33
					1/21/09	40.66	4602.26
					4/9/09	42.88	4600.04
FULTZ	212447	607153.306	3469063.892	4642.92	7/13/09	54.94	4587.98
10612	£1441	007 100.000	5-03005.032	7074.34	10/8/09	56.16	4586.76
					1/25/10	53.45	4589.47
					4/20/10	63.82	4579.10
					7/14/10	119.86	4523.06
					2/21/08	191.05	4435.39
					5/5/08	191.28	4435.16
					7/15/08	191.44	4435.00
					10/16/08	191.83	4434.61
					1/28/09	191.92	4434.52
GARNER 557	558557	602659.240	3468962.415	4626.44	4/15/09	192.09	4434.35
O/ II (I TELL OO)	000001	302000.240	5-00002.410	7020.77	7/16/09	192.52	4433.92
					10/14/09	192.82	4433.62
					2/2/10	193.33	4433.11
					4/22/10	193.49	4432.95
					7/20/10	193.93	4432.51
					10/19/10	194.29	4432.15

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/4/08	193.20	4435.09
					5/5/08	195.90	4432.39
					7/15/08	193.58	4434.71
					10/15/08	194.35	4433.94
					1/28/09	194.80	4433.49
CADNED 625	E0762E	600665 250	2469067.002	4600.00	4/15/09	195.54	4432.75
GARNER 635	587635	602665.352	3468967.902	4628.29	7/16/09	194.88	4433.41
					10/14/09	196.36	4431.93
					2/2/10	195.32	4432.97
					4/22/10	196.01	4432.28
					8/25/10	195.57	4432.72
					10/19/10	225.83	4402.46
					5/21/08	220.91	4496.20
				4717.11	8/15/08	238.48	4478.63
					10/29/08	235.90	4481.21
			7 3469820.260		2/24/09	236.13	4480.98
00000=-					5/14/09	236.17	4480.94
GGOOSE 547	628547	606256.657			8/19/09	236.01	4481.10
					8/19/09	236.01	4481.10
					11/11/09	237.66	4479.45
					3/9/10	238.84	4478.27
					4/27/10	239.17	4477.94
					5/22/08	660.15	4264.16
					8/4/08	659.79	4264.52
					12/2/08	658.25	4266.06
					2/26/09	658.62	4265.69
					5/5/09	657.23	4267.08
GL-03	539782	604386.940	3473747.943	4924.31	8/12/09	656.56	4267.75
					8/12/09	656.56	4267.75
					11/10/09	655.31	4269.00
					3/2/10	655.52	4268.79
					4/9/10	655.35	4268.96
					7/7/10	655.05	4269.26
					2/21/08	183.90	4447.23
					5/5/08	188.11	4443.02
					7/16/08	184.41	4446.72
					10/22/08	184.68	4446.45
					1/27/09	184.87	4446.26
GOAR RANCH	610695	602454.751	3468892.471	4631.13	4/15/09	184.96	4446.17
					7/7/09	185.36	4445.77
ĺ					10/12/09	185.72	4445.41
ĺ				-	2/2/10	186.25	4444.88
					4/22/10	186.44	4444.69
				7/13/10	186.76	4444.37	

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/27/08	163.05	4434.16
					5/7/08	163.28	4433.93
					7/14/08	163.87	4433.34
					10/16/08	163.95	4433.26
					1/28/09	163.82	4433.39
					4/15/09	164.16	4433.05
HOBAN	805290	601705.848	3468880.329	4597.21	7/14/09	164.59	4432.62
					10/15/09	165.00	4432.21
					3/2/10	165.32	4431.89
					5/18/10	165.71	4431.50
					7/20/10	166.17	4431.04
					10/19/10	166.45	4430.76
					3/4/08	150.10	4443.81
					5/8/08	150.70	4443.21
					7/14/08		4443.21
						150.91	
					10/15/08	150.67	4443.24
		NR 601281.159	3468770.377	4593.91	1/28/09	150.67	4443.24
HOWARD⁴	NR				4/15/09	151.15	4442.76
					7/15/09	151.76	4442.15
					10/12/09	152.08	4441.83
					1/27/10	152.20	4441.71
					4/21/10	152.30	4441.61
					7/19/10	153.16	4440.75
					10/18/10	153.53	4440.38
					2/6/08	134.67	4437.36
					5/6/08	135.28	4436.75
					7/16/08	136.24	4435.79
					10/28/08	135.87	4436.16
					1/28/09	134.88	4437.15
KEEFER	209744	599879.175	3468119.015	4572.03	4/16/09	135.00	4437.03
					7/14/09	136.07	4435.96
					10/13/09	136.67	4435.36
					1/26/10	136.26	4435.77
					4/20/10	136.26	4435.77
					7/15/10	137.29	4434.74
					10/19/10	137.68	4434.35
					2/20/08	156.15	4444.55
					5/6/08	156.40	4444.30
					7/15/08	157.07	4443.63
					11/19/08	157.17	4443.53
					1/28/09	156.70	4444.00
MCCONNELL 265	539265	601463.094	3468840.139	4600.70	4/15/09	157.22	4443.48
					7/15/09	157.59	4443.11
					10/12/09	158.13	4442.57
					1/26/10	158.35	4442.35
					4/22/10	158.68	4442.02
					7/21/10	159.37	4441.33
					10/18/10	159.63	4441.07

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					3/5/08	288.30	4440.23
					5/15/08	286.53	4442.00
					7/31/08	286.82	4441.71
					10/20/08	287.09	4441.44
					2/11/09	287.74	4440.79
					4/20/09	287.47	4441.06
METZLER	35-71891	602091.308	3471381.176	4728.53	7/15/09	287.58	4440.95
					10/14/09	287.99	4440.54
					2/1/10	288.38	4440.15
					5/18/10	288.65	4439.88
					7/16/10	288.88	4439.65
					10/19/10	289.09	4439.44
					7/24/08	557.90	4203.33
					10/16/08	549.30	4211.93
					2/25/09	536.40	4224.83
NESS	509127	607866.391	3471419.494	4761.23	5/11/09	544.64	4216.59
INLOG	309127	007800.391			8/11/09	566.87	4194.36
					11/12/09	537.34	4223.89
					2/2/10	531.85	4229.38
					4/21/10	568.11	4193.12
					7/19/10	573.02	4188.21
			3471576.400		5/13/08	339.77	4460.91
NOTEMAN	212483	606053.800		4800.68	8/27/08	344.34	4456.34
					11/22/08	322.26	4478.42
					2/25/09	327.54	4473.14
					10/7/09	101.17	4430.21
NSD-02	527587	598820.051	3468821.474	4531.38	3/16/10	99.43	4431.95
					5/25/10	101.63	4429.75
					8/25/10	102.38	4429.00
					10/7/09	85.62	4432.66
NSD-03	527586	598070.538	3468694.259	4518.28	3/16/10	83.51	4434.77
					5/25/10	84.49	4433.79
	1				8/25/10	85.70	4432.58
					10/27/08	160.51	4439.93
NWC-02	562944	600177.435	3467474.673	4600.44	4/29/09 ⁵	160.5	4439.94
					9/10/09 ⁵	155	4445.44
	 				4/2010 ⁵	131	4469.44
					11/3/08	131.48	4443.51
NWC-03	203321	601153.857	3468350.838	4574.99	4/29/09 ⁵	130	4444.99
					9/10/09 ⁵	126	4448.99
	1				10/9/09 ⁵	125	4449.99
					2/2/09	130.03	4442.79
				4/23/09	130.62	4442.20	
	00=00.	004457-01	0.4000 10.07-	4570.00	7/21/09	131.26	4441.56
NWC-03 CAP ⁶	627684	601151.704	3468343.653	4572.82	10/21/09	131.60	4441.22
					2/3/10	131.34	4441.48
					4/21/10	131.86	4440.96
					7/20/10	131.50	4441.32

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					12/2/08	352.11	4338.66
NWC-04	551849	605020 000	2460074 050	4690.77	4/29/09 ⁵	328	4362.77
111110-04	551649	605829.808	3469071.959	4090.77	9/10/09 ⁵	324	4366.77
					4/2010 ⁵	216	4474.77
					4/29/09 ⁵	156	4436.50
NWC-06	575700	599822.821	3467749.954	4592.50	9/10/09 ⁵	155	4437.50
14440-00	373700	399022.021	3407749.934	4392.30	10/9/09 ⁵	148	4444.50
					4/2010 ⁵	140	4452.50
					5/13/08	68.65	4643.30
					8/5/08	69.53	4642.42
					10/16/08	69.83	4642.12
					1/20/09	69.23	4642.72
OSBORN	643436	607031.823	3470270.548	4711.95	4/7/09	69.60	4642.35
OSBOKIN	043430	007031.023	3470270.340	4711.95	7/8/09	96.61	4615.34
					10/5/09	75.09	4636.86
					1/21/10	75.37	4636.58
					4/19/10	81.59	4630.36
					7/12/10	83.00	4628.95
					1/22/09	155.28	4536.12
					4/9/09	156.15	4535.25
					7/9/09	161.61	4529.79
PANAGAKOS	35-76413	605304.234	3469323.140	4691.40	10/6/09	167.20	4524.20
17111/10/11100	00 70410	000004.204	3403323.140		1/21/10	166.92	4524.48
					4/20/10	167.11	4524.29
					7/20/10	171.78	4519.62
					10/18/10	176.39	4515.01
					5/15/08	279.78	4447.43
					8/18/08	280.06	4447.15
PARRA	576415	602170.716	3471263.549	4727.21	11/3/08	280.39	4446.82
174444	0,0110	0021701710	011 1200.010		2/13/09	280.75	4446.46
					4/28/09	280.88	4446.33
					7/20/09	280.99	4446.22
					7/17/08	149.88	4442.25
					11/3/08	150.99	4441.14
					2/25/09	149.68	4442.45
					4/14/09	150.01	4442.12
PIONKE	613395	601045.471	3468960.981	4592.13	7/13/09	150.47	4441.66
, ioitic	0.0000	301010.471	3 100000.001	1002.10	10/7/09	150.96	4441.17
					3/8/10	151.11	4441.02
					4/26/10	151.32	4440.81
					7/15/10	151.90	4440.23
					10/18/10	152.38	4439.75

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/20/08	204.22	4434.87
					5/19/08	204.72	4434.37
					7/31/08	205.56	4433.53
					10/21/08	205.06	4434.03
					2/13/09	204.74	4434.35
POOL	E00E10	E00692 602	2470042 022	4620.00	4/21/09	204.87	4434.22
POOL	509518	599683.603	3470013.823	4639.09	7/20/09	205.69	4433.40
					10/20/09	206.06	4433.03
					2/24/10	205.59	4433.50
					4/22/10	205.48	4433.61
					7/14/10	206.58	4432.51
				10/20/10	206.74	4432.35	
					10/27/08	159.45	4437.16
				4596.61	1/29/09	158.74	4437.87
					4/16/09	158.66	4437.95
		599730.649	3467584.363		7/10/09	159.64	4436.97
RAMIREZ	216425				10/6/09	160.36	4436.25
					1/25/10	160.10	4436.51
					4/21/10	159.96	4436.65
					7/21/10	161.05	4435.56
					10/19/10	161.23	4435.38
					2/15/08	40.85	4607.06
					5/13/08	43.82	4604.09
					7/29/08	45.25	4602.66
					10/22/08	44.54	4603.37
					1/20/09	44.31	4603.60
RAY	803772	607083.422	3469195.147	4647.91	4/8/09	44.68	4603.23
KAT	003/12	007003.422	3409193.147	4047.91	7/9/09	48.99	4598.92
					10/7/09	49.87	4598.04
					1/26/10	47.61	4600.30
					4/20/10	49.78	4598.13
					7/14/10	51.36	4596.55
					10/20/10	49.85	4598.06
					11/11/09	135.46	4441.89
					2/25/10	135.89	4441.46
ROGERS 596	573596	601001.503	3468491.639	4577.35	4/22/10	135.62	4441.73
					7/16/10	136.63	4440.72
					10/19/10	136.61	4440.74
					2/7/08	129.85	4449.17
					7/29/08	131.86	4447.16
ROGERS 750 ⁷	641750	600977 690	3468417 386	4570 N2	10/22/08	132.08	4446.94
RUGERS /30	641750	600977.690	3468417.386	4579.02	2/10/09	130.62	4448.40
					4/29/09	131.33	4447.69
					8/3/09	135.07	4443.95

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					7/17/08	149.65	4441.01
					11/3/08	150.15	4440.51
					2/10/09	149.02	4441.64
					4/16/09	149.53	4441.13
DOCEDO E	040040	000440 040	2407020 000	4500.00	7/13/09	150.31	4440.35
ROGERS E	216018	600449.648	3467636.029	4590.66	10/6/09	150.76	4439.90
					1/25/10	150.64	4440.02
					4/21/10	150.97	4439.69
					8/25/10	151.15	4439.51
					10/19/10	151.57	4439.09
					2/5/08	293.29	4441.89
					5/15/08	293.57	4441.61
					7/30/08	293.86	4441.32
					10/20/08	294.18	4441.00
			3471424.219	4735.18	2/12/09	294.62	4440.56
RUIZ	531770	770 602857.357			4/21/09	294.66	4440.52
					8/3/09	294.98	4440.20
					10/28/09	295.33	4439.85
					2/1/10	295.70	4439.48
					4/26/10	295.96	4439.22
					7/20/10	296.29	4438.89
					2/8/08	121.80	4442.69
					5/19/08	123.49	4441.00
					7/29/08	122.64	4441.85
					10/22/08	123.39	4441.10
					1/29/09	122.87	4441.62
00111440778	240065	600011 014	2460260 622	4564.40	4/17/09	123.53	4440.96
SCHWARTZ ⁸	210865	600811.014	3468269.622	4564.49	7/10/09	124.15	4440.34
					10/6/09	124.55	4439.94
					1/22/10	124.32	4440.17
					4/21/10	124.65	4439.84
					7/21/10	125.80	4438.69
					10/19/10	126.30	4438.19
					5/13/08	44.94	4606.28
					8/5/08	46.61	4604.61
					10/16/08	46.60	4604.62
					1/21/09	47.19	4604.03
STEPHENS	808560	606981.766	3469072.799	4651.22	4/8/09	48.45	4602.77
SILTHEINS	000000	000301.700	3403012.139	4001.22	7/7/09	49.41	4601.81
					10/7/09	50.33	4600.89
					1/26/10	51.13	4600.09
					4/20/10	51.24	4599.98
					7/14/10	51.91	4599.31

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/6/08	352.10	4454.42
					5/15/08	358.97	4447.55
					8/5/08	Dry	<4426
					10/16/08	347.00	4459.52
					1/21/09	344.78	4461.74
SUNBELT	201531	605998.250	3471735.149	4806.52	4/10/09	349.64	4456.88
					7/8/09	356.99	4449.53
					10/5/09	Dry	<4426
					1/21/10	Dry	<4426
					4/19/10	Dry	<4426
					7/12/10	Dry	<4426
					2/13/08	26.50	4690.09
					5/14/08	30.69	4685.90
					7/24/08	32.06	4684.53
					10/16/08	27.53	4689.06
			3470648.298	4716.59	1/20/09	29.77	4686.82
SWAN	NR	607378.547			4/7/09	31.47	4685.12
					7/8/09	33.61	4682.98
					10/5/09	35.12	4681.47
					1/21/10	36.64	4679.95
					4/21/10	38.06	4678.53
					7/19/10	39.67	4676.92
					3/4/08	346.62	4461.81
					5/23/08	346.16	4462.27
					8/15/08	353.91	4454.52
					10/30/08	349.45	4458.98
					2/24/09	348.64	4459.79
TM-02A	522574	604152.059	3472008.794	4808.43	5/6/09	349.38	4459.05
					8/12/09	349.13	4459.30
					11/4/09	348.97	4459.46
					3/10/10	348.19	4460.24
					4/6/10	353.86	4454.57
					7/6/10	349.20	4459.23
					3/12/08	127.14	4770.71
					5/20/08	127.40	4770.45
					8/6/08	128.02	4769.83
					11/12/08	128.00	4769.85
					2/26/09	126.94	4770.91
TM-03	522575	606366.130	3473711.046	4897.85	5/13/09	113.86	4783.99
					8/18/09	128.80	4769.05
					11/10/09	125.38	4772.47
			- -	3/2/10	128.02	4769.83	
				4/14/10	130.56	4767.29	
					7/7/10	131.25	4766.60

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/26/08	158.78	4549.10
					5/20/08	158.76	4549.12
					8/4/08	158.80	4549.08
					10/29/08	158.85	4549.03
					2/16/09	159.28	4548.60
TM-06 MILLER	522695	606055.975	3468376.658	4707.88	5/13/09	158.81	4549.07
					8/18/09	158.91	4548.97
					11/12/09	158.96	4548.92
					3/8/10	158.99	4548.89
					4/14/10	159.02	4548.86
				7/2/10	159.13	4548.75	
					3/5/08	81.00	4636.71
					5/22/08	81.24	4636.47
				4717.71	8/6/08	81.65	4636.06
		605588.075	3469842.199		11/5/08	81.75	4635.96
					2/26/09	81.88	4635.83
TM-16	522578				5/13/09	82.01	4635.70
					8/19/09	82.37	4635.34
					11/10/09	82.83	4634.88
					3/2/10	83.09	4634.62
					4/14/10	83.22	4634.49
					7/2/10	83.51	4634.20
					3/6/08	199.85	4446.02
					5/22/08	199.50	4446.37
					8/6/08	199.19	4446.68
					11/18/08	199.46	4446.41
					3/3/09	199.81	4446.06
TM-19A	522581	602458.710	3469197.426	4645.87	4/22/09	200.57	4445.30
					8/12/09	201.46	4444.41
					11/4/09	201.16	4444.71
					3/10/10	201.34	4444.53
					4/9/10	201.55	4444.32
					7/7/10	202.35	4443.52
					3/5/08	211.04	4455.63
					5/22/08	210.98	4455.69
					8/6/08	211.55	4455.12
					11/6/08	207.05	4459.62
					2/18/09	212.31	4454.36
TM-42	562554	603698.271	3469104.903	4666.67	5/7/09	212.37	4454.30
					8/18/09	212.77	4453.90
					11/3/09	213.05	4453.62
				2/24/10	213.36	4453.31	
				4/19/10	213.51	4453.16	
					7/2/10	213.52	4453.15

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					5/7/08	123.30	4438.68
					7/15/08	121.55	4440.43
					10/15/08	122.35	4439.63
					2/11/09	121.28	4440.70
TVI 236	802236	600552.215	3467978.431	4561.98	4/17/09	122.73	4439.25
1 1 1 2 3 0	002230	000002.210	3407370.431	4301.30	7/21/09	123.96	4438.02
					10/19/09	123.88	4438.10
					2/2/10	122.26	4439.72
					4/23/10	122.70	4439.28
				7/15/10	125.08	4436.90	
					5/7/08	127.10	4440.12
					7/14/08	126.30	4440.92
					10/15/08	130.00	4437.22
					2/11/09	149.87	4417.35
					4/17/09	126.73	4440.49
TVI 713	567713	600729.095	3468412.946	4567.22	7/21/09	127.36	4439.86
					10/19/09	127.79	4439.43
					2/2/10	126.71	4440.51
					4/23/10	127.53	4439.69
					7/15/10	129.14	4438.08
					10/20/10	130.84	4436.38
					2/15/08	143.31	4443.58
					5/7/08	143.90	4442.99
					7/16/08	144.22	4442.67
					10/28/08	145.81	4441.08
					1/29/09	143.99	4442.90
WEISKOPF	641802	601154.951	3468658.855	4586.89	4/15/09	144.38	4442.51
WLISKOFI	041002	001104.901	5400050.055	+300.09	7/15/09	144.99	4441.90
					10/15/09	145.66	4441.23
					2/2/10	145.28	4441.61
					4/22/10	145.72	4441.17
				7/19/10	146.46	4440.43	
				10/20/10	147.11	4439.78	

Well Name	ADWR 55 Registry No.	UTM East (meters)	UTM North (meters)	Measuring Point Elevation ¹ (ft amsl)	Date	Depth To Water (feet)	Groundwater Elevation (ft amsl)
					2/4/08	144.85	4436.09
					5/6/08	145.33	4435.61
					7/16/08	146.40	4434.54
					10/28/08	146.01	4434.93
		599678.880			2/10/09	144.83	4436.11
ZANDER	205126		3467998.486	4580.94	4/16/09	144.94	4436.00
ZANDER	203120	333070.000	3407330.400	4300.54	7/14/09	146.14	4434.80
					10/13/09	146.77	4434.17
					1/26/10	146.34	4434.60
					4/22/10	146.27	4434.67
					7/21/10	147.81	4433.13
				10/19/10	147.80	4433.14	

ADWR = Arizona Department of Water Resources

UTM = Universal Transverse Mercator Zone 12, North American Datum 1983 (NAD83)

ft amsl = feet above mean sea level

NA = Not Applicable

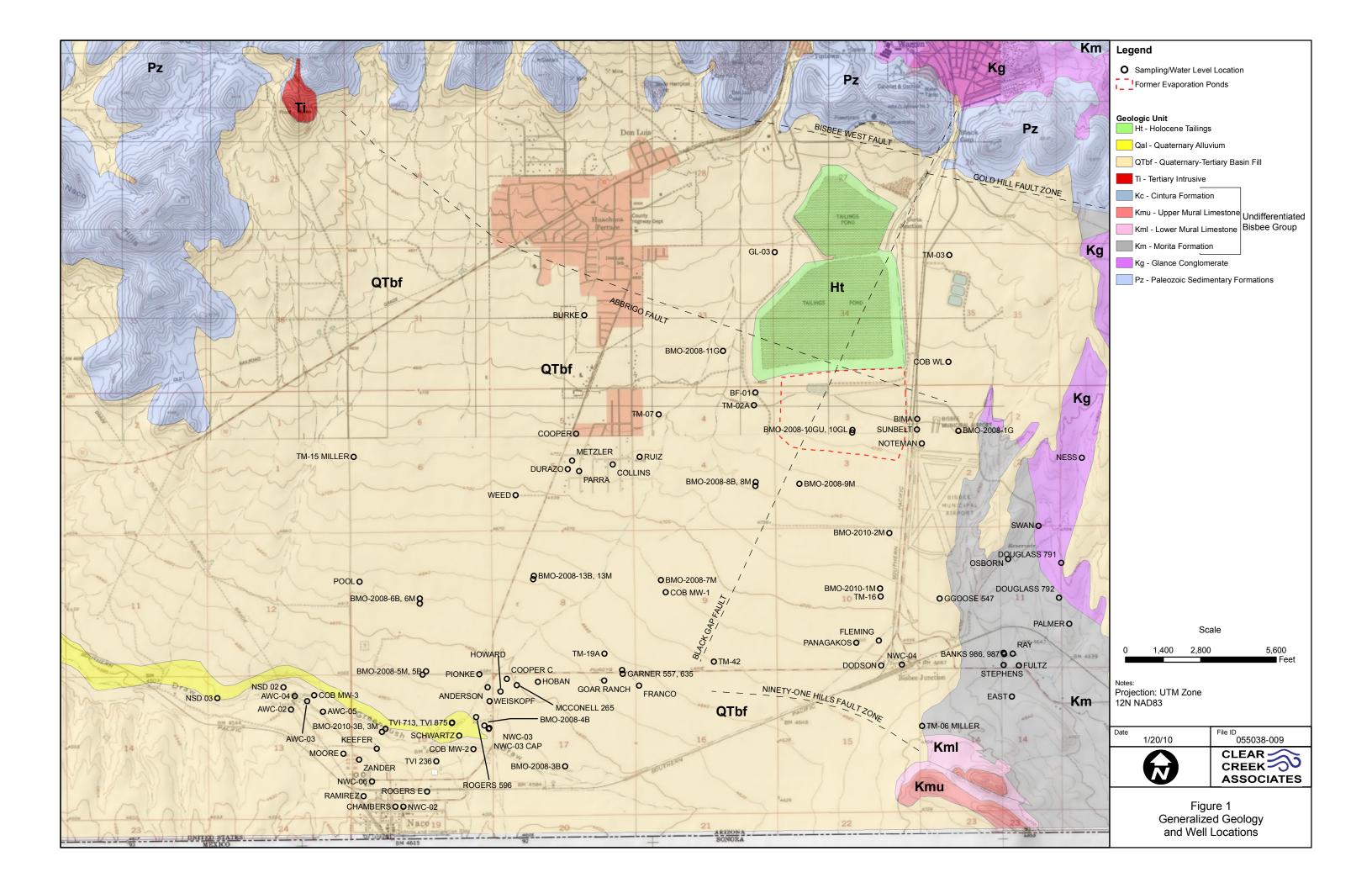
NR = No Record

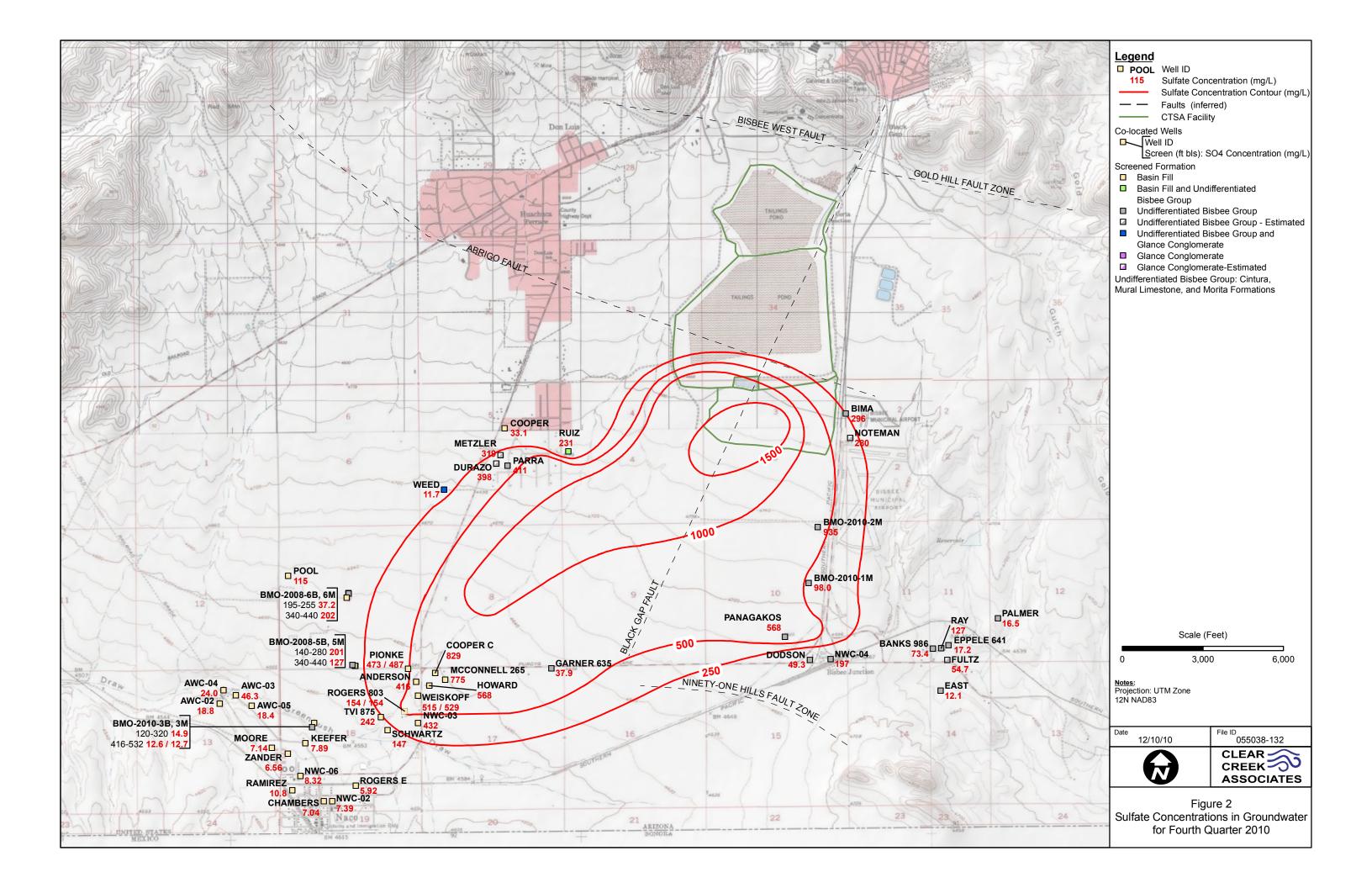
¹ Survey Source: Survey conducted by Gilbert Technical Service, Inc and Arizona Land Sepcialists, Inc.

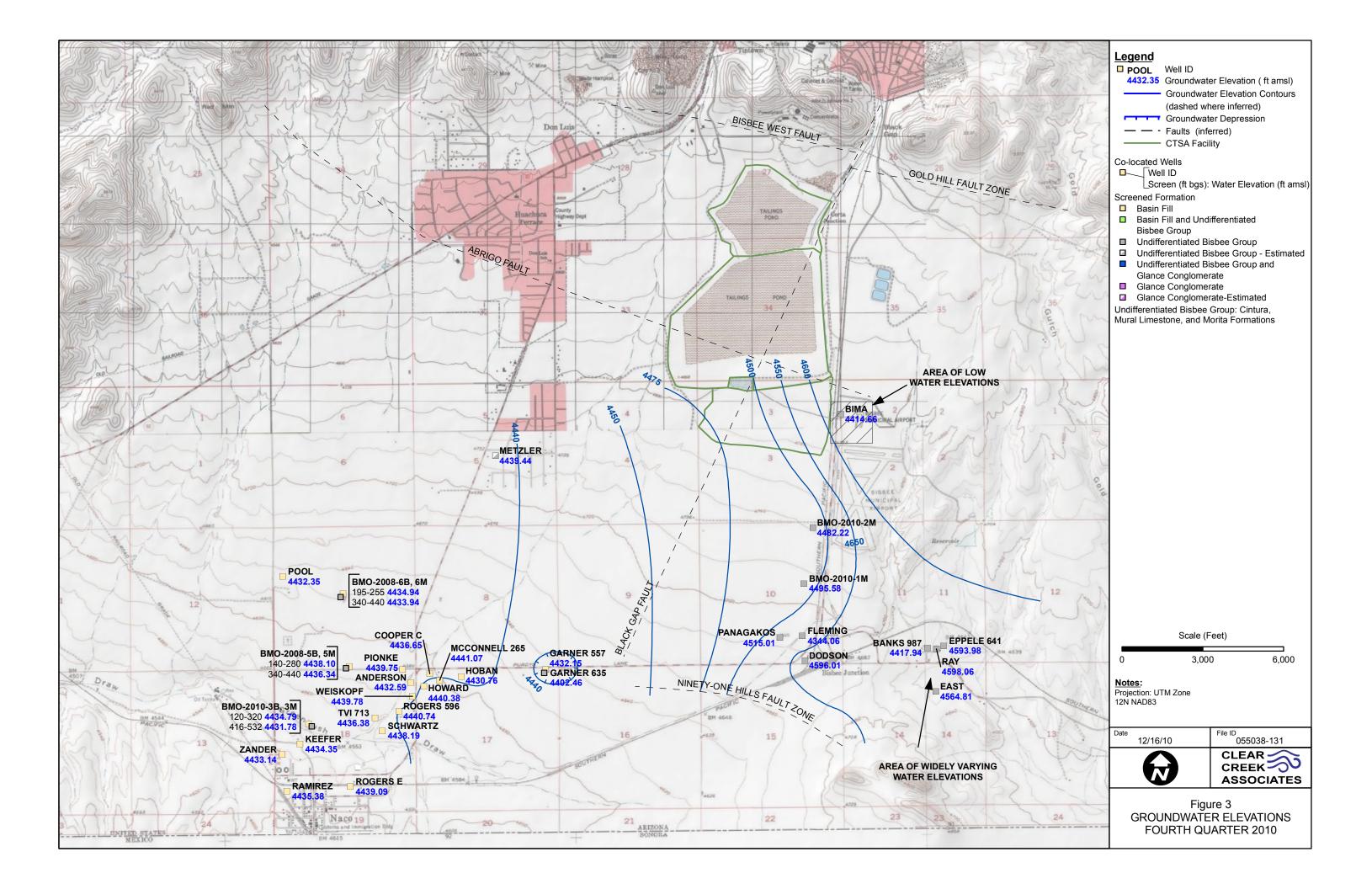
² Measuring point elevation for third quarter 2008 changed to reflect well survey completed on September 18, 2008

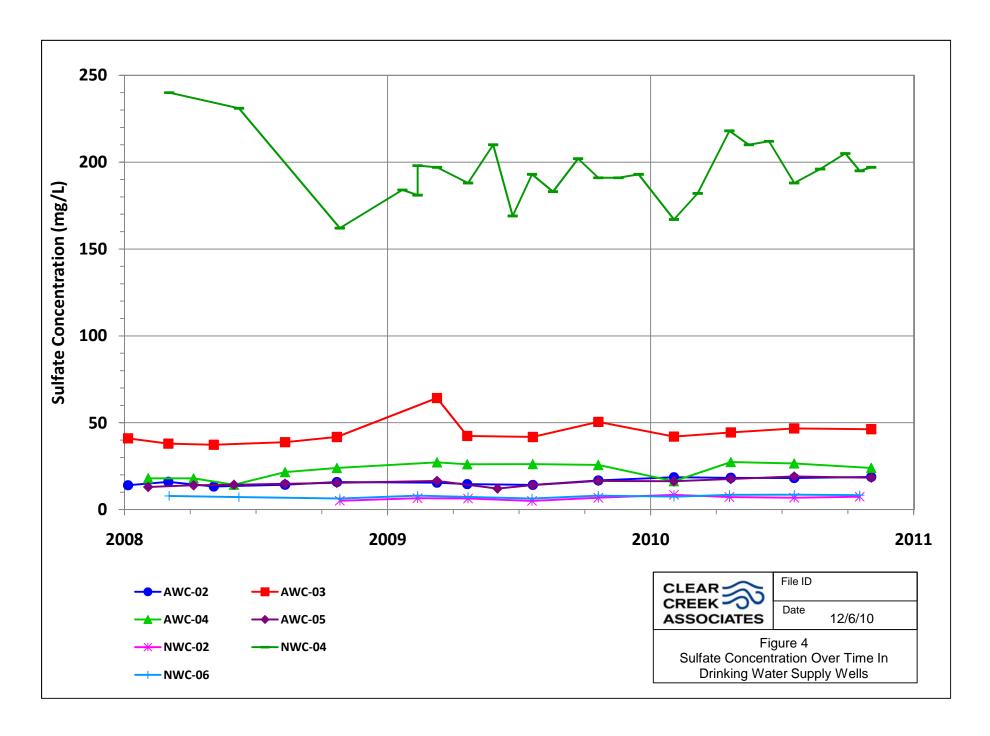
³ Depth to Water measurement provided by Arizona Water Company

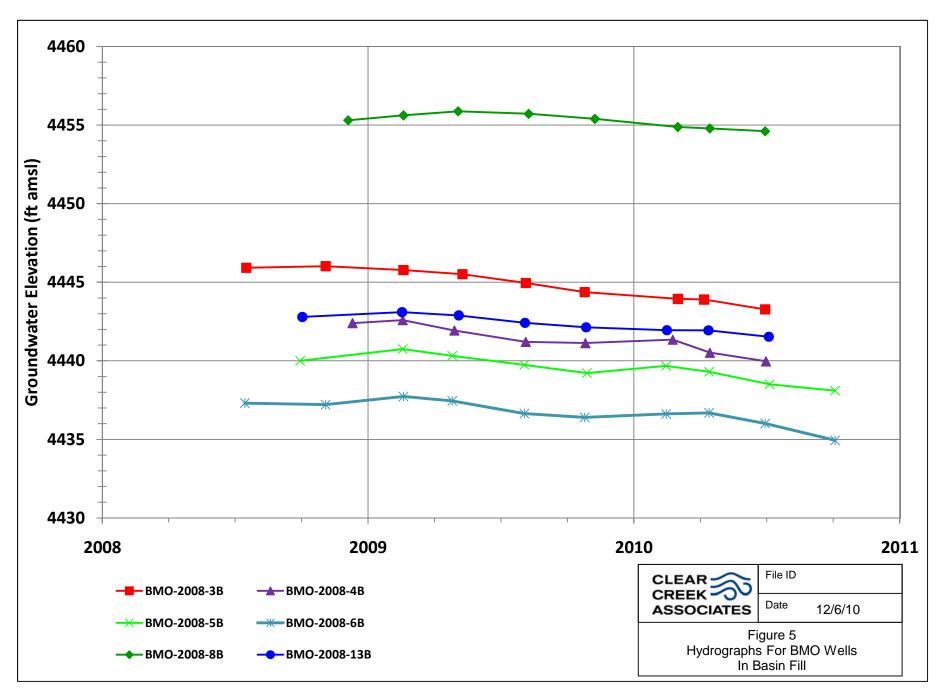
⁴ Measuring point elevation changed to reflect survey results September 10, 2010 and applied to all measurements collected

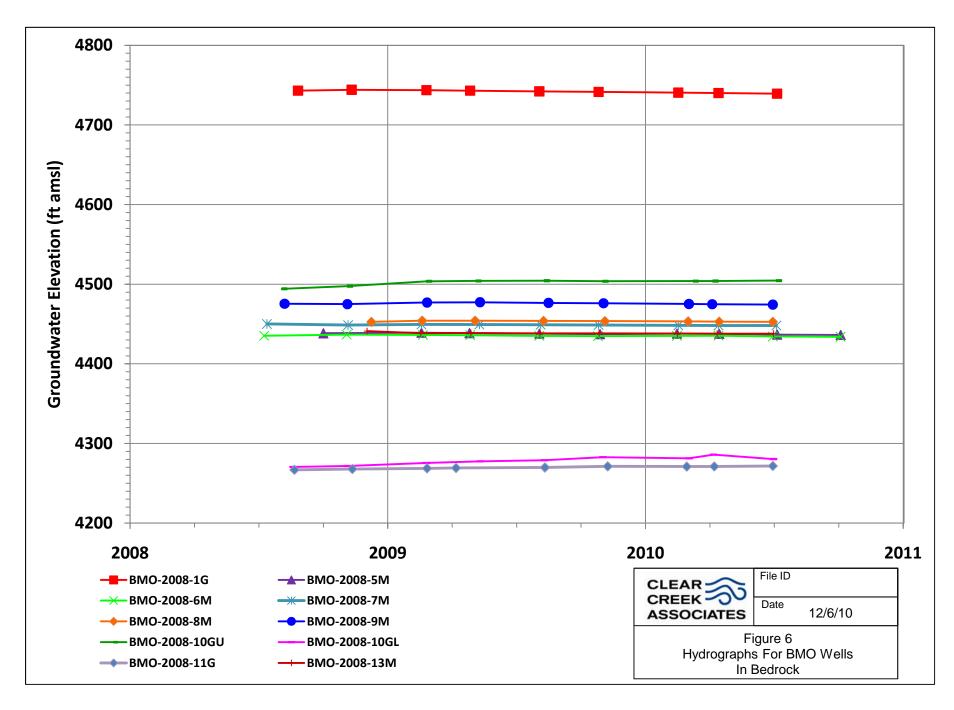

⁵ Depth to Water measurement provided by Naco Water Company


⁶ Measuring point elevation for second quarter 2009 changed to reflect well survey completed on April 27, 2009


⁷ Well previously identified as ROGERS 803


⁸ Measuring point elevation changed to reflect survey results September 10, 2010 and applied to all measurements collected


FIGURES



N:\Projects\G & K\055038_Copper Queen Branch Mitigation Order\Groundwater Monitoring\Groundwater Monitoring Reports\2010 Q4 CQB Groundwater Monitoring Report\SO4 and GW elev Time Series for Select Q4 2010.xls

APPENDIX A DATA VERIFICATION REPORT

APPENDIX A

DATA VERIFICATION REPORT

FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

Prepared for:

FREEPORT-MCMORAN COPPER QUEEN BRANCH

36 West Highway 92 Bisbee, Arizona 85603

Prepared by:

CLEAR CREEK ASSOCIATES, P.L.C.

221 North Court Avenue, Suite 101 Tucson, Arizona 85701

January 14, 2011

TABLE OF CONTENTS

1.	INTI	RODUCTION	1
2.	FIEL	D OPERATIONS	3
	2.1	Water Level Monitoring	
	2.2	Groundwater Sampling	
		2.2.1 Pre-Sampling Field Activities	
		2.2.2 Well Purging, Field Measurements, and Sample Collection	
		2.2.3 Post-Sampling Field Activities	
3.	SAM	IPLE HANDLING	6
4.	LAB	ORATORY QUALITY CONTROL	7
	4.1	Licensure	
	4.2	Analytical Method	7
	4.3	Method Detection Limit (MDL) and Reporting Limit (RL)	7
	4.4	Timeliness	
	4.5	Quality Control Measurements	8
		4.5.1 Calibration Blanks, and Calibration Verification Standards	8
		4.5.2 Analytical Spike	8
		4.5.3 Laboratory Duplicate Samples	8
		4.5.4 Sample Re-runs	9
		4.5.5 Field Blank Samples	9
5.	DAT	A QUALITY INDICATORS	10
	5.1	Precision	10
	5.2	Bias	11
	5.3	Accuracy	11
	5.4	Representativeness	11
	5.5	Comparability	11
	5.6	Completeness	12
	5.7	Sensitivity	12
6	REF	ERENCES	13

1. INTRODUCTION

This report summarizes the data verification review of groundwater samples collected and analyzed during the fourth quarter 2010 by Clear Creek Associates (Clear Creek) and Freeport McMoRan Corporation Copper Queen Branch (CQB) pursuant to Mitigation Order on Consent Docket No. P-121-07 (ADEQ, 2007). Clear Creek and CQB collected groundwater samples pursuant to the groundwater monitoring program approved by ADEQ in April 2010 (ADEQ, 2010). Analytical results for groundwater samples collected for this project during the fourth quarter 2010 were provided to Clear Creek by SVL Analytical, Inc. (SVL) for preparation of the fourth quarter 2010 Groundwater Monitoring Report.

Quality assurance (QA) and quality control (QC) procedures are specified in the *Quality Assurance Project Plan for Aquifer Characterization Plan* (QAPP) (Appendix F of HGC, 2008) for field sampling, chain-of-custody (COC) documentation, laboratory analysis, and reporting. This report reviews field sampling for samples collected by Clear Creek and CQB. Additionally, sample handling and laboratory QA/QC data are evaluated according to the data quality indicators (DQIs) given in the QAPP.

The laboratory reports for the fourth quarter 2010 samples including COC forms, laboratory correspondence, QC summaries, data qualifiers, internal QA/QC tests performed by SVL and any case narratives are presented with the laboratory reports included in Appendix B. Based on the results of laboratory control samples, matrix spike/recovery and blank spikes, SVL did not advise of any modifications that should be made regarding the usability and data validation status of the laboratory test results. The analytical results for all 61 samples collected by Clear Creek and CQB are contained in 7 reports having the SVL Project numbers identified in the following table.

SVL ID	WELLS REPORTED						
Number of well samples collected: 51 Number of duplicate samples collected: 4 Number of field and equipment blanks collected: 6 Total number of samples collected: 61							
W0J0103	BMO-2008-6M, BMO-2008-6B, BMO-2008-5M, BMO-2008-5B						
W0J0605	BIMA, DUP101810, DODSON, PANAGAKOS, HOWARD, PIONKE, COOPER, PALMER, DUP101910, ROGERS 803, ZANDER, MOORE, KEEFER, NWC-04, NWC-03, NWC-06, NWC-02, GARNER 635, ANDERSON, RAMIREZ						
W0J0606	RAY, DUP102010, POOL, BANKS 986, WEISKOPF, RUIZ, COOPER C, TVI 875, EPPELE 641, NOTEMAN, CHAMBERS, METZLER, DURAZO, ROGERS E, FB101910, WEED, EQB101910, PARRA, FB102010, EQB10201						
W0J0608	EAST, MCCONELL 265, FULTZ, SCHWARTZ						
W0K0242	AWC-05, AWC-03, AWC-04, AWC-02, NWC-04						
W0K0353	BMO-2010-3B, BMO-2010-3M, DUP20101110, BMO-2010-1M, BMO-2010-2M						
W0L0468	NWC-04, FB20101214, EQB20101214						

2. FIELD OPERATIONS

Field operations for this project consisted of the following for all monitoring wells sampled by Clear Creek and CQB:

- Static water level measurement,
- Well purging,
- Collection of water quality field parameters (pH in standard units [SU], specific conductance [SC] in microsiemens per centimeter [μS/cm], and temperature in degrees Celsius [°C]),
- Collection of groundwater samples for water quality analysis,
- Collection of groundwater quality assurance and quality control samples, and
- Equipment decontamination.

Documentation of the field activities was evaluated for quality assurance and has been deemed to have met the documentation requirements stated in the QAPP.

2.1 Water Level Monitoring

Static water level measurements were attempted at each well that was sampled and at all wells where water level monitoring was conducted by Clear Creek and CQB. Water levels were measured while the well pump was off. However, it was not always possible to ascertain from the well owners how long the pump had been off. Before measuring the water level at each well, the battery on the water level indicator was checked and the sensitivity level was adjusted, if necessary. Each measurement was collected and verified by measuring the depth to water multiple times in order to obtain a consistent reading and accurate measurement.

2.2 Groundwater Sampling

During this monitoring period groundwater samples were collected from wells designated in the groundwater monitoring program approved by ADEQ (ADEQ, 2010). More detailed information regarding the wells sampled for water quality and water level measurements is listed in Tables 2, 3, and 4 of the main text.

2.2.1 Pre-Sampling Field Activities

On each day of sampling, the pH¹ and SC² multipurpose probe was calibrated. In addition, the water level indicator was checked for a signal which indicates a working meter and sufficient battery strength. On each day where sampling extended for more than half a day, a mid-day calibration check was performed on the pH and SC probe to ensure accurate measurement. In addition to calibrating the instruments each day, measures were taken to 1) properly decontaminate field equipment, 2) ensure the appropriate storage and transport temperature of the samples, and 3) document activities related to the collection of groundwater samples as part of this project. These objectives were met by 1) replenishing or obtaining supplies of deionized water and ice daily, 2) use of the proper preservative and sample collection containers, 3) properly packing the samples on ice during field activities, 4) using deionized water to properly decontaminate field equipment prior to the start of sampling each day and after sampling at each well, and 5) obtaining the appropriate field notebook in order to document field activities related to the groundwater monitoring program.

2.2.2 Well Purging, Field Measurements, and Sample Collection

When possible three wetted casing volumes were purged from each well prior to sampling. However, when three casing volumes could not be purged, this information was noted on the groundwater sampling form (Appendix D) at each well for which this was the case. Purge water was discharged to the ground surface.

Field measurements were collected at varying intervals during well purging at each well where a water quality sample was collected. If possible, field parameters were monitored until the measurements stabilized within 0.3 standard units for pH, 2 degrees Celsius for temperature and 100 microSiemen/centimeter for specific conductance as described in Section 4.2.1.2 of the OAPP.

During this monitoring period groundwater samples were collected for analysis from 49 wells. Groundwater samples were collected by filtering the sample into a 250 milliliter bottle using clean filtration apparatus and one disposable 0.45-micron filter. All bottles were provided by SVL and maintained in a clean and secure work area until used in the field.

² Field SC meter was calibrated using a standard stock solution of 3900 μS/cm

January 14, 2011

¹ Field pH meter was calibrated using a three point calibration and pH buffers 4, 7, and 10

2.2.3 Post-Sampling Field Activities

Post sampling field activities consisted of equipment decontamination, sample storage, and sample shipping. Field equipment that comes into contact with the sample was decontaminated using a small amount of Alconox[®] detergent and deionized water. After washing, the equipment was rinsed with deionized water.

After sample collection, samples from each well were placed into a plastic bag and stored on ice until they could be packed securely for shipping to SVL. In addition, the sample collected from each well was individually bagged (without ice) to prevent the label from getting soaked with water and rubbing off or becoming illegible.

SAMPLE HANDLING

All samples collected by Clear Creek and CQB were shipped to SVL for analysis. COC documentation accompanied all samples submitted and included the sample name, collection date and time. COCs contained in laboratory reports included the date and time the samples were received by SVL. As noted on the analytical data reports from SVL, all of the sample bottles were received intact, properly preserved, and in good condition. The samples were shipped within one to four days of sample collection and the time between sample collection and receipt of samples by SVL was one to four days.

4. LABORATORY QUALITY CONTROL

As specified in the QAPP, laboratory QC was maintained for all analyses through proper licensure, the use of approved analytical methods, QC measurements, appropriate turn-around-time for analysis (timeliness), method detection limits (MDLs), and practical quantitation limits (PQLs). Each of these controls is discussed in the following subsections.

The review of laboratory QC included a review to identify any qualified data and an assessment to determine their significance. Additionally, the laboratory QC summaries were reviewed to verify that results met QA criteria.

4.1 Licensure

SVL is licensed with the Arizona Department of Health Services (license number AZ0538) and is accredited in accordance with the National Environmental Laboratory Accreditation Conference.

4.2 Analytical Method

United States Environmental Protection Agency (EPA) method 300.0 was used for sulfate analysis during this monitoring period.

4.3 Method Detection Limit (MDL) and Reporting Limit (RL)

The MDL and RL of the analytical method used by SVL are shown in the following table. The MDL for analyses of samples was equal to or less than the target MDL identified in the QAPP.

Method	MDL	RL	Target MDL ¹
	(mg/L)	(mg/L)	(mg/L)
EPA 300.0	0.08	0.30	10

mg/L = milligrams per liter

Target MDL from Table F.2 of QAPP

4.4 Timeliness

All samples submitted for sulfate analysis were analyzed within the twenty-eight day holding time specified by EPA Method 300.0.

4.5 Quality Control Measurements

The following QC samples were prepared and analyzed:

- Calibration blanks and calibration verification standards
- Analytical spike samples
- Laboratory duplicate samples
- Field blank samples

4.5.1 Calibration Blanks, and Calibration Verification Standards

Results from the analyses of the initial calibration blanks and initial calibration verification standards conducted by EPA Method 300.0 were reviewed. The results of each initial calibration blank analyzed showed no detections of the target analyte. All analytical results for the initial calibration verification standards and laboratory fortified blanks showed percent recoveries that were within the acceptance criteria specified by the SVL QA plan and the QAPP.

4.5.2 Analytical Spike

Analytical spike samples were analyzed for the EPA Method 300.0. The spike samples were prepared by adding a sulfate spike to randomly chosen samples. Spike recoveries for all analyses were between 80 and 120 percent.

4.5.3 Laboratory Duplicate Samples

Analyses of laboratory duplicate samples were reviewed as part of this quality data verification report. Field duplicate samples are discussed in Section 5.1. In all cases where the relative percent difference (RPD) could be calculated, the RPD was within 20 percent, which is the tolerance range set by the laboratory. The results met QA criteria and demonstrate an appropriate level of precision in laboratory analysis of these samples.

4.5.4 Sample Re-Analysis

During the fourth quarter 2010, one field sample (ANDERSON) was re-analyzed by SVL at the request of Clear Creek. Sample re-analysis was requested based on comparison to historical results. Results for the sample are provided in the table below. For the re-analysis requested, SVL conducted two additional analyses of each sample and generated a new report including all analytical results for each sample. The sample was given a "N4" qualifier indicating that the original sample results were confirmed. The results are confirmed if the RPD is within 20 percent.

SVL Project No.	Well ID	Original Result (mg/L)	First Re-Run (mg/L)	Second Re-Run (mg/L)	RPD*	
W0J0605	ANDERSON	416	424	409	1.90%	

mg/L = milligrams per

liter

RPD = Relative percent difference

*RPD is calculated for the original sample and the re-run with the biggest difference in concentrations, RPD samples are bolded

4.5.5 Field Blank Samples

During the fourth quarter 2010, six field blank samples were collected, including three field blanks using unfiltered deionized water (FB101910, FB102010, and FB20101214) and three equipment blanks using filtered deionized water (EQB101910, EQB102010, and, EQB20101214). Field blank samples were collected and submitted along with other samples to evaluate the potential for contaminant introduction under field conditions. As required by Section 4.2.1.5 of the QAPP, a minimum of one field blank and one equipment blank sample was collected for every twenty samples. Analytical results from field blank and equipment blank samples showed no detections.

5. DATA QUALITY INDICATORS

The QAPP provides several DQIs for assessing the overall quality of the data. These DQIs include the following:

- Precision
- Bias
- Accuracy
- Representativeness
- Comparability
- Completeness
- Sensitivity

Each of these DQIs is discussed below in relation to the fourth quarter 2010 groundwater sampling and analysis conducted by Clear Creek and CQB.

5.1 Precision

Precision indicates how well a measurement can be reproduced. Precision is quantified by calculating the RPD between duplicate samples. For the purposes of QA/QC, precision was quantified by calculating the RPDs between duplicates among the following groups of duplicate samples:

- Laboratory duplicate samples
- Field duplicate samples

As discussed in Section 4.5.3 there were no exceedances of RPD QA criteria for any laboratory duplicates. During this monitoring period four field filtered duplicate samples (DUP102010, DUP101810, DUP101910, and DUP20101110) were collected by Clear Creek and CQB for analysis. The collection of four duplicate samples meets the QA/QC goal of collecting one duplicate sample for every twenty groundwater samples collected, as stated in Section 4.2.1.5 of the QAPP.

Results for the four field duplicate samples collected are provided in the table below. The range of RPD values was between 0.00 and 2.92 percent, all within the 20 percent acceptance criteria

for field duplicates, as stated in Section 3.3.1 of the QAPP. Overall, the DQI for precision is deemed to be met.

SVL Project No.	Well ID	ell ID Duplicate ID Sample (mg/l)		Duplicate (mg/l)	RPD
W0K0353	BMO-2010-3M	DUP20101110	12.6	12.7	0.79%
W0J0605	PIONKE	DUP101810	473	487	2.92%
W0J0605	ROGERS 803	DUP101910	154	154	0.00%
W0J0606	WEISKOPF	DUP102010	515	529	2.68%

mg/L = milligrams per liter

RPD = Relative Percent Difference

5.2 Bias

Bias is a systematic distortion of measurements causing consistent errors in one direction. Bias is managed in this data set by the consistent application of standardized sample collection and analysis procedures.

5.3 Accuracy

Accuracy is a measure of the agreement of a measurement to a known value and is measured using the recoveries from laboratory control samples. As discussed in Sections 4.5.1, 4.5.2, and 4.5.3 there were no significant exceedances of the recovery QA criteria for any of the calibration standards, analytical spikes, or laboratory duplicates, respectively. Based on this information, the overall accuracy of the data is judged sufficient for the purpose of aquifer characterization.

5.4 Representativeness

All samples were taken from locations specified in the Work Plan (HGC, 2008) following sampling procedures specified in the QAPP. Therefore, the samples are judged to provide a good representation of groundwater quality at the sampled locations. The analytical data are judged to be representative of groundwater conditions because the analyses used standard procedures and methods that met QA/QC guidelines of the QAPP.

5.5 Comparability

All samples were collected using standardized procedures (HGC, 2008) and were analyzed by SVL using standardized methods. Insofar as standardized sample collection and analytical methods are adhered to, the sample results should be comparable.

5.6 Completeness

All samples collected and subsequently analyzed and reported by SVL are judged to satisfy the QA/QC criteria for this project and are deemed usable for aquifer characterization. Thus, the completeness of analytical results is 100 percent.

5.7 Sensitivity

The analytical method used to analyze the samples meet the MDL requirements specified in Table F.2 of the QAPP. Therefore, the analytical sensitivity is considered acceptable for use in aquifer characterization.

6. REFERENCES

- Arizona Department of Environmental Quality (ADEQ). 2007. Mitigation Order on Consent, Docket No. P-121-07, In the Matter of: Phelps Dodge Corporation, Copper Queen Branch, located at 36 West Highway 92, Bisbee, Arizona, ADEQ Identification Number 100531. November 14, 2007.
- ADEQ. 2010. Correspondence from Cynthia Campbell, ADEQ, to Rebecca Sawyer, CQB, Re: Request to Modify Groundwater Monitoring Program, Mitigation Order on Consent No. P-127-07, Your Letter dated January 25, 2010. April 22, 2010.
- Hydro Geo Chem, Inc. 2008. Revision 1, Work Plan to Characterize and Mitigate Sulfate with Respect to Drinking Water Supplies in the Vicinity of the Concentrator Tailing Storage Area, Cochise County, Arizona. July 3, 2008.

APPENDIX B ANALYTICAL REPORTS

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92
Bisbee, AZ 85603
Work Order: W0J0103
Reported: 13-Oct-10 12:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
BMO-2008-6M	W0J0103-01	Ground Water	05-Oct-10 07:10	CS	06-Oct-2010
BMO-2008-6B	W0J0103-02	Ground Water	05-Oct-10 08:05	CS	06-Oct-2010
BMO-2008-5M	W0J0103-03	Ground Water	05-Oct-10 09:25	CS	06-Oct-2010
BMO-2008-5B	W0J0103-04	Ground Water	05-Oct-10 10:05	CS	06-Oct-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0103 Bisbee, AZ 85603 Reported: 13-Oct-10 12:17

Sampled: 05-Oct-10 07:10 Client Sample ID: BMO-2008-6M Received: 06-Oct-10 SVL Sample ID: W0J0103-01 (Ground Water)

Sample Report Page 1 of 1 Sampled By: CS Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 202 mg/L 0.26 W041236 FEH 10/07/10 19:46 1.50

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0103 Bisbee, AZ 85603 Reported: 13-Oct-10 12:17

Sampled: 05-Oct-10 08:05 Client Sample ID: BMO-2008-6B Received: 06-Oct-10 SVL Sample ID: W0J0103-02 (Ground Water) Sample Report Page 1 of 1

Sampled By: CS Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 37.2 mg/L 0.30 0.05 W041236 FEH 10/06/10 22:38

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0103 Bisbee, AZ 85603 Reported: 13-Oct-10 12:17

Sampled: 05-Oct-10 09:25 Client Sample ID: BMO-2008-5M Received: 06-Oct-10

SVL Sample ID: W0J0103-03 (Ground Water) Sample Report Page 1 of 1 Sampled By: CS Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes **Dissolved Anions by Ion Chromatography**

EPA 300.0 Sulfate as SO4 127 mg/L 0.26 W041236 FEH 10/07/10 19:57 1.50

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0103 Bisbee, AZ 85603 Reported: 13-Oct-10 12:17

Sampled: 05-Oct-10 10:05 Client Sample ID: BMO-2008-5B Received: 06-Oct-10 SVL Sample ID: W0J0103-04 (Ground Water)

Sample Report Page 1 of 1 Sampled By: CS Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 201 mg/L 0.26 W041236 FEH 10/07/10 20:08 1.50

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0J0103**Reported: 13-Oct-10 12:17

-										
Quality (Control - BLANK Data									
Method	Analyte	Units	Result		MDL	1	MRL	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	Anions by Ion Chromatograph Sulfate as SO4	tography mg/L <0.30			0.05	,	0.30	W041236	06-Oct-10	
Quality (Control - LABORATORY CON	TROL S	AMPLE Data							
Method	Analyte	Units	LCS Result		LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	issolved Anions by Ion Chromatography		9.96	9.96 10.0		99.6	90 - 110	W041236	06-Oct-10	
Quality (Control - DUPLICATE Data									
Method	Analyte	Units	Duplicate Result	9	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	Anions by Ion Chromatograph Sulfate as SO4	y mg/L	3.03			0.6	20	W041236	06-Oct-10	
Quality (Control - MATRIX SPIKE Data	1								
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	Anions by Ion Chromatograph Sulfate as SO4	y mg/L	13.0	3.01	10.0	100	90 - 110	W041236	06-Oct-10	
			Notes	and Defir	nitions					
D2	Sample required dilution due to h	igh concen	ntration of target a	nalyte.						
LCS	Laboratory Control Sample (Blan	k Spike)								
RPD	Relative Percent Difference									
LIDI	A result is less than the detection limit									
UDL	A result is less than the detection									
R > 4S	% recovery not applicable, sampl	e concentra	ation more than fo	ur times grea	ater than spike lev	/el				
			ation more than fo	ur times grea	ater than spike lev	/eI				
R > 4S	% recovery not applicable, sampl		ation more than fo	ur times grea	ater than spike lev	vel .				
R > 4S <rl< td=""><td>% recovery not applicable, sampl A result is less than the reporting</td><td></td><td>ation more than fo</td><td>ur times grea</td><td>ater than spike lev</td><td>zel</td><td></td><td></td><td></td><td></td></rl<>	% recovery not applicable, sampl A result is less than the reporting		ation more than fo	ur times grea	ater than spike lev	zel				

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0J0605**Reported: 10-Nov-10 12:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
BIMA	W0J0605-01	Ground Water	18-Oct-10 11:10	BD	22-Oct-2010
DUP 10/18/10	W0J0605-02	Ground Water	18-Oct-10 11:24	BD	22-Oct-2010
DODSON	W0J0605-03	Ground Water	18-Oct-10 14:00	RG	22-Oct-2010
PANAGAKOS	W0J0605-04	Ground Water	18-Oct-10 14:45	RG	22-Oct-2010
HOWARD	W0J0605-05	Ground Water	18-Oct-10 15:40	RG	22-Oct-2010
PIONKE	W0J0605-06	Ground Water	18-Oct-10 16:10	BD	22-Oct-2010
COOPER	W0J0605-07	Ground Water	18-Oct-10 16:30	RG	22-Oct-2010
PALMER	W0J0605-08	Ground Water	18-Oct-10 12:50	BD	22-Oct-2010
DUP 101910	W0J0605-09	Ground Water	19-Oct-10 07:30	BD	22-Oct-2010
ROGERS 803	W0J0605-10	Ground Water	19-Oct-10 08:22	BD	22-Oct-2010
ZANDER	W0J0605-11	Ground Water	19-Oct-10 08:30	RG	22-Oct-2010
MOORE	W0J0605-12	Ground Water	19-Oct-10 09:20	RG	22-Oct-2010
KEEFER	W0J0605-13	Ground Water	19-Oct-10 10:15	RG	22-Oct-2010
NWC 04	W0J0605-14	Ground Water	19-Oct-10 10:27	BD	22-Oct-2010
NWC 03	W0J0605-15	Ground Water	19-Oct-10 11:05	BD	22-Oct-2010
NWC 06	W0J0605-16	Ground Water	19-Oct-10 11:34	BD	22-Oct-2010
NWC 02	W0J0605-17	Ground Water	19-Oct-10 12:03	BD	22-Oct-2010
GARNER 635	W0J0605-18	Ground Water	19-Oct-10 12:10	RG	22-Oct-2010
ANDERSON	W0J0605-19	Ground Water	19-Oct-10 12:40	BD	22-Oct-2010
RAMIREZ	W0J0605-20	Ground Water	19-Oct-10 13:50	RG	22-Oct-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Case Narrative

11/10/10mab: Report reissued. As requested by client; Sample -19 reanalyzed for SO4.

Original results confirmed. Original and reanalysis results reported.

John Ken

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0605

Reported: 10-Nov-10 12:52

Client Sample ID: BIMA

SVI, Sample ID: W0.10605-01 (Ground Water)

Sample Report Page 1 of 1

Sample Report Page 1 of 1

	5 v E Sample 1D. Woodoo-o'i (Cround Water)				Sample Report 1 age 1 of 1				Sampled By: BD		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anion	ns by Ion Chromatograp										
EPA 300.0	Sulfate as SO4	296	mg/L	3.00	0.53	10	W043368	FEH	10/25/10 18:34	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 11:24 Client Sample ID: DUP 10/18/10 Received: 22-Oct-10 SVI. Sample ID: W0.10605-02 (Ground Water) Sample Report Page 1 of 1

	5 v E Sample 1D. 11000005-02 (Cround Water)				Sample Report 1 age 1 of 1				Sampled By: BD		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Ani	ons by Ion Chromatograp	ohy									
EPA 300.0	Sulfate as SO4	487	mg/L	3.00	0.53	10	W043368	FEH	10/25/10 18:42	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 14:00 Client Sample ID: DODSON Received: 22-Oct-10 SVL Sample ID: W0J0605-03 (Ground Water) Sample Report Page 1 of 1

	5 v B sumple 15. Violotto 00 (Ground Vidtor)				ampic Kepori	i age i oi i	Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	s by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	49.3	mg/L	1.50	0.26	5	W043368	FEH	10/26/10 09:54	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 14:45 Client Sample ID: PANAGAKOS Received: 22-Oct-10 SVI. Sample ID: W0.10605-04 (Ground Water) Sample Report Page 1 of 1

	5 v E Sample 1D. 11000005-04 (Ordana trater)				Sampled By: RG				ed By: RG	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anie	ons by Ion Chromatograp	phy								
EPA 300.0	Sulfate as SO4	568	mg/L	7.50	1.32	25	W043368	FEH	10/25/10 19:30	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 15:40 Client Sample ID: HOWARD Received: 22-Oct-10 SVL Sample ID: W0J0605-05 (Ground Water) Sample Report Page 1 of 1

Sampled By: RG Method Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 568 mg/L 1.32 W043368 FEH 10/25/10 19:38 7.50

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 16:10 Client Sample ID: PIONKE Received: 22-Oct-10 SVI. Sample ID: W0.10605-06 (Ground Water) Sample Report Page 1 of 1

	5 VL Sample 1D. WO30003-00 (Ground Water)				Sample Report Fage 1 of 1				Sampled By: BD		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anion	s by Ion Chromatograp	phy									
EPA 300.0	Sulfate as SO4	473	mg/L	3.00	0.53	10	W043368	FEH	10/25/10 19:46	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 16:30 Client Sample ID: COOPER Received: 22-Oct-10 SVL Sample ID: W0J0605-07 (Ground Water) Sample Report Page 1 of 1

	5 v E sample 15. 1100000 01 (Ground Trator)				Sample Report 1 age 1 of 1			Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anion	ns by Ion Chromatograp	hy									
EPA 300.0	Sulfate as SO4	33.1	mg/L	1.50	0.26	5	W043368	FEH	10/25/10 19:54	D1	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 18-Oct-10 12:50 Client Sample ID: PALMER Received: 22-Oct-10 SVI. Sample ID: W0.10605-08 (Ground Water) Sample Report Page 1 of 1

5 v E Sample 1D. 11000005-00 (Cround Water)				3	ampie Kepori	i age i oi i	Sampled By: BD			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	16.5	mg/L	1.50	0.26	5	W043368	FEH	10/25/10 20:02	D1

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Ken

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0605

Reported: 10-Nov-10 12:52

Client Sample ID: **DUP 101910**SVI, Sample ID: **W0,10605-09 (Ground Water)**Sample Report Page 1 of 1

Sample Report Page 1 of 1

SVE Sample 1D. VVOSOOS-09 (Ground vvater)				3	ашріе Керогі	rage 1 of 1	Sampled By: BD			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatograp	hy								
EPA 300.0	Sulfate as SO4	154	mg/L	1.50	0.26	5	W043368	FEH	10/25/10 20:09	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 08:22 Client Sample ID: ROGERS 803 Received: 22-Oct-10 SVL Sample ID: W0J0605-10 (Ground Water) Sample Report Page 1 of 1

Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 154 mg/L 0.26 W043368 FEH 10/25/10 20:17 1.50

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 08:30 Client Sample ID: ZANDER Received: 22-Oct-10 SVL Sample ID: W0J0605-11 (Ground Water) Sample Report Page 1 of 1

Sampled By: RG Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 6.56 mg/L 0.30 0.05 W043368 FEH 10/25/10 20:41

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 09:20 Client Sample ID: MOORE Received: 22-Oct-10 SVL Sample ID: W0J0605-12 (Ground Water) Sample Report Page 1 of 1

Sampled By: RG Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 7.14 mg/L 0.30 0.05 W043368 FEH 10/25/10 20:49

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 10:15 Client Sample ID: KEEFER Received: 22-Oct-10 SVL Sample ID: W0J0605-13 (Ground Water) Sample Report Page 1 of 1

Sampled By: RG Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 7.89 mg/L 0.30 0.05 W043368 FEH 10/25/10 20:57

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 10:27 Client Sample ID: NWC 04 Received: 22-Oct-10 SVL Sample ID: W0J0605-14 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 195 mg/L 3.00 0.53 W043368 FEH 10/25/10 21:05

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 11:05 Client Sample ID: NWC 03 Received: 22-Oct-10 SVL Sample ID: W0J0605-15 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 432 mg/L 3.00 0.53 W043368 FEH 10/25/10 21:13

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 11:34 Client Sample ID: NWC 06 Received: 22-Oct-10 SVL Sample ID: W0J0605-16 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 8.32 mg/L 0.30 0.05 W043368 FEH 10/25/10 21:21

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 12:03 Client Sample ID: NWC 02 Received: 22-Oct-10

0.30

0.05

W043368

FEH

10/25/10 21:29

SVL Sample ID: W0J0605-17 (Ground Water) Sample Report Page 1 of 1 Sampled By: BD Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

7.39

John Ken

Sulfate as SO4

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 12:10 Client Sample ID: GARNER 635 Received: 22-Oct-10 SVL Sample ID: W0J0605-18 (Ground Water) Sample Report Page 1 of 1

0.05

W043368

FEH

10/25/10 21:37

	S 12 Sumpro 13: 11000000 To (Ground Trator)			Sample Report 1 age 1 of 1			Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Ani	ons by Ion Chromatogra	phy								

0.30

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

37.9

John Ken John Kern

Sulfate as SO4

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 12:40 Client Sample ID: ANDERSON Received: 22-Oct-10 SVL Sample ID: W0J0605-19 (Ground Water) Sample Report Page 1 of 1

SVL Sample ID: W0J0605-19 (Ground Water)				Sa	ample Report	t Page 1 of 1	Sampled By: BD			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	416	mg/L	3.00	0.53	10	W043368	FEH	10/25/10 21:45	D2
EPA 300.0	Sulfate as SO4	424	mg/L	3.00	0.53	10	W043368	FEH	11/09/10 13:23	D2,N4
EPA 300.0	Sulfate as SO4	409	mg/L	3.00	0.53	10	W043368	FEH	11/09/10 13:34	D2,N4

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern Laboratory Director

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0605 Bisbee, AZ 85603 Reported: 10-Nov-10 12:52

Sampled: 19-Oct-10 13:50 Client Sample ID: RAMIREZ Received: 22-Oct-10 SVL Sample ID: W0J0605-20 (Ground Water) Sample Report Page 1 of 1

Sampled By: RG Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 10.8 mg/L 0.30 0.05 W043368 FEH 10/25/10 21:52

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Bisbee, AZ 85603 Work Order: **W0J0605**Reported: 10-Nov-10 12:52

Quality Cont	rol - BLANK Data							
Method	Analyte	Units	Result	MDL	MRL	Batch ID	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatog Sulfate as SO4	raphy mg/L	<0.30	0.05	0.30	W043368	25-Oct-10	

Quality Cont	rol - LABORATORY	CONTROL SAN	MPLE Data						
Method	Analyte	Units	LCS Result	LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatog	raphy							
EPA 300.0	Sulfate as SO4	mg/L	9.92	10.0	99.2	90 - 110	W043368	25-Oct-10	

Quality Cont	Quality Control - DUPLICATE Data												
Method	Analyte	Units	Duplicate Result	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes				
Dissolved Anio	ons by Ion Chromatogi	raphy											
EPA 300.0	Sulfate as SO4	mg/L	48.2	49.3	2.1	20	W043368	26-Oct-10	D2				

Quality Con	trol - MATRIX SPIKE	Data								
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved Ani	ons by Ion Chromatog	raphy								
			400	40.0	400		00 110	1110 422 60	25.0 + 10	
EPA 300.0	Sulfate as SO4	mg/L	18.9	10.8	10.0	80.9	90 - 110	W043368	25-Oct-10	M2

Notes and Definitions

D1	Samp	ole requ	iirec	l dilı	ution	due to	matrix.	
	~							

D2 Sample required dilution due to high concentration of target analyte.

M2 Matrix spike recovery was low, but the LCS recovery was acceptable.

N4 After re-analysis original results are confirmed.

LCS Laboratory Control Sample (Blank Spike)

RPD Relative Percent Difference

UDL A result is less than the detection limit

R > 4S % recovery not applicable, sample concentration more than four times greater than spike level

<RL A result is less than the reporting limit

MRL Method Reporting Limit

MDL Method Detection Limit

N/A Not Applicable

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
RAY	W0J0606-01	Ground Water	20-Oct-10 08:55	BD	22-Oct-2010
DUP 102010	W0J0606-02	Ground Water	20-Oct-10 09:30	RG	22-Oct-2010
POOL	W0J0606-03	Ground Water	20-Oct-10 10:10	RG	22-Oct-2010
BANKS 986	W0J0606-04	Ground Water	20-Oct-10 10:44	BD	22-Oct-2010
WEISKOPF	W0J0606-05	Ground Water	20-Oct-10 11:05	RG	22-Oct-2010
RUIZ	W0J0606-06	Ground Water	20-Oct-10 09:03	RG	22-Oct-2010
COOPER C	W0J0606-07	Ground Water	20-Oct-10 12:07	RG	22-Oct-2010
TVI 875	W0J0606-08	Ground Water	20-Oct-10 12:30	RG	22-Oct-2010
EPPELE 641	W0J0606-09	Ground Water	20-Oct-10 12:39	BD	22-Oct-2010
NOTEMAN	W0J0606-10	Ground Water	20-Oct-10 12:55	RG	22-Oct-2010
CHAMBERS	W0J0606-11	Ground Water	19-Oct-10 14:20	RG	22-Oct-2010
METZLER	W0J0606-12	Ground Water	19-Oct-10 14:25	BD	22-Oct-2010
DURAZO	W0J0606-13	Ground Water	19-Oct-10 15:31	BD	22-Oct-2010
ROGERS E	W0J0606-14	Ground Water	19-Oct-10 15:22	RG	22-Oct-2010
FB 101910	W0J0606-15	Ground Water	19-Oct-10 15:55	BD	22-Oct-2010
WEED	W0J0606-16	Ground Water	19-Oct-10 16:08	BD	22-Oct-2010
EQB 101910	W0J0606-17	Ground Water	19-Oct-10 16:20	BD	22-Oct-2010
PARRA	W0J0606-18	Ground Water	20-Oct-10 08:25	RG	22-Oct-2010
FB 102010	W0J0606-19	Ground Water	20-Oct-10 08:40	BD	22-Oct-2010
EQB 102010	W0J0606-20	Ground Water	20-Oct-10 08:45	BD	22-Oct-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 08:55 Client Sample ID: RAY Received: 22-Oct-10 SVI. Sample ID: W0.10606-01 (Ground Water) Sample Report Page 1 of 1

	SVE Sample 1D. WOODOO-OT (Ground Water)				Sampled By: BD					
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anio	ns by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	127	mg/L	3.00	0.53	10	W043369	FEH	10/25/10 17:45	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 09:30 Client Sample ID: **DUP 102010** Received: 22-Oct-10 SVL Sample ID: W0J0606-02 (Ground Water) Sample Report Page 1 of 1 Sampled By: PG

					ampie recport	Tuge I of I	Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Ani	ons by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	529	mg/L	7.50	1.32	25	W043369	FEH	10/25/10 17:54	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

Client Sample ID: POOL

SVI_Sample ID: W0.10606-03 (Ground Water)

Sample Report Page 1 of 1

Sample Report Page 1 of 1

Sample ID: W0.10606-03 (Ground Water)

	SVE Sample ID. VVOSOOO-OS (Ground vvaler)				ашріе Керогі	rage 1 of 1	Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anio	ns by Ion Chromatograp									
EPA 300.0	Sulfate as SO4	115	mg/L	3.00	0.53	10	W043369	FEH	10/25/10 18:04	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 10:44 Client Sample ID: BANKS 986 Received: 22-Oct-10 SVI. Sample ID: W0.10606-04 (Ground Water) Sample Report Page 1 of 1

	5 TE Sumple ID. 11000000-04 (Ground Trater)				Sample Report Lage 1 of 1				Sampled By: BD		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anio	ons by Ion Chromatograp					•					
EPA 300.0	Sulfate as SO4	73.4	mg/L	3.00	0.53	10	W043369	FEH	10/25/10 18:15	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 11:05 Client Sample ID: WEISKOPF Received: 22-Oct-10 SVL Sample ID: W0J0606-05 (Ground Water) Sample Report Page 1 of 1 Sampled By: RG

		•			. II .			Sampi	cu by. KG	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	s by Ion Chromatograp	hy								
EPA 300.0	Sulfate as SO4	515	mg/L	7.50	1.32	25	W043369	FEH	10/25/10 18:24	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 09:03 Client Sample ID: RUIZ Received: 22-Oct-10

SVL Sample ID: W0J0606-06 (Ground Water) Sample Report Page 1 of 1 Sampled By: RG Method Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 231 mg/L 3.00 0.53 W043369 FEH 10/25/10 18:35

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

Client Sample ID: COOPER C
SVL Sample ID: W0J0606-07 (Ground Water)
Sample Report Page 1 of 1
Sample Report Page 1 of 1
Sample Report Page 1 of 1

	SVE Sumple 13. Western (Ground Water)			5.	ampic Kepori	i age i oi i	Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Ani	ions by Ion Chromatograp									
EPA 300.0	Sulfate as SO4	829	mg/L	15.0	2.65	50	W043369	FEH	10/25/10 18:45	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

 Client Sample ID:
 TVI 875
 Sample Report Page 1 of 1
 20-Oct-10 12:30

 SVL Sample ID:
 W0J0606-08 (Ground Water)
 Sample Report Page 1 of 1
 Sample Report Page 1 of 1
 Sample Report Page 1 of 1

	Sample 19: Reg							ed By: RG		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatograp	phy								
EPA 300.0	Sulfate as SO4	242	mg/L	3.00	0.53	10	W043369	FEH	10/25/10 19:17	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 12:39 Client Sample ID: EPPELE 641 Received: 22-Oct-10 SVL Sample ID: W0J0606-09 (Ground Water) Sample Report Page 1 of 1

Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 17.2 mg/L 0.30 0.05 W043369 FEH 10/25/10 19:27

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 12:55 Client Sample ID: NOTEMAN Received: 22-Oct-10 SVI. Sample ID: W0.10606-10 (Ground Water) Sample Report Page 1 of 1

	BVE Bumple 1B. 11000	ooo-10 (Ground	Tratoi j		impie Kepor	i age i oi i		Batch Analyst Analyzed			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anio	ns by Ion Chromatograp	hy									
EPA 300.0	Sulfate as SO4	280	mg/L	7.50	1.32	25	W043369	FEH	10/25/10 20:01	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 19-Oct-10 14:20 Client Sample ID: CHAMBERS Received: 22-Oct-10 SVL Sample ID: W0J0606-11 (Ground Water)

Sample Report Page 1 of 1 Sampled By: RG Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 7.04 mg/L 0.30 0.05 W043369 FEH 10/25/10 20:12

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

Client Sample ID: METZLER

SVI, Sample ID: W0,10606-12 (Ground Water)

Sample Report Page 1 of 1

Sample Report Page 1 of 1

	SVE Sample 1B. WOO	ooo-12 (Ground	rater j	3	ашріс Керогі	1 age 1 of 1		Sampled By: BD			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anie	ons by Ion Chromatograp	ohy									
EPA 300.0	Sulfate as SO4	319	mg/L	3.00	0.53	10	W043369	FEH	10/26/10 11:26	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: **W0J0606**Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Client Sample ID: **DURAZO**SVI. Sample ID: **W0.10606-13 (Ground Water)**Sample Report Page 1 of 1

Sample Report Page 1 of 1

	SVL Sample ID. VVOS	valei j	3	ашріе керогі	ed By: BD					
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	s by Ion Chromatograp	phy								
EPA 300.0	Sulfate as SO4	398	mg/L	3.00	0.53	10	W043369	FEH	10/26/10 11:36	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: **W0J0606**Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Client Sample ID: ROGERS E

SVI, Sample ID: W0.10606-14 (Ground Water)

Sample Report Page 1 of 1

Sample Report Page 1 of 1

	SVE Sample 1B: 11000	ooo-1+ (Orouna	rator j		ашріс Керогі	i age i oi i		Sample		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anior	ns by Ion Chromatograp	hy								
EPA 300 0	Sulfate as SO4	5.92	mg/L	0.30	0.05		W043369	FEH	10/25/10 20:46	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 19-Oct-10 15:55 Client Sample ID: FB 101910 Received: 22-Oct-10 SVL Sample ID: W0J0606-15 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 < 0.30 mg/L 0.30 0.05 W043369 FEH 10/25/10 20:58

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 19-Oct-10 16:08 Client Sample ID: WEED Received: 22-Oct-10 SVL Sample ID: W0J0606-16 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 11.7 mg/L 0.30 0.05 W043369 FEH 10/25/10 21:31

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 19-Oct-10 16:20 Client Sample ID: EQB 101910 Received: 22-Oct-10 SVL Sample ID: W0J0606-17 (Ground Water) Sample Report Page 1 of 1

	S + E Sumpre 1B : 1100	occ ii (Greana i	· u.o. ,	5	ampie report	1 450 1 01 1		Sample	а ву: вр	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved An	ions by Ion Chromatograp	ohy								

0.30

0.05

W043369

10/25/10 21:43

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

< 0.30

John Ken

Sulfate as SO4

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0J0606

Reported: 05-Nov-10 13:16

Client Sample ID: PARRA

SVI_Sample ID: W0.10606-18 (Ground Water)

Syl_Sample Report Page 1 of 1

Sample Report Page 1 of 1

	SVL Sample ID. WOOD	ouo-10 (Ground	vvalei)	5	ampie Keport	rage 1 of 1		Sampled By: RG Batch Analyst Analyzed			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anio	ns by Ion Chromatograp	hy									
EPA 300.0	Sulfate as SO4	411	mg/L	3.00	0.53	10	W043369	FEH	10/26/10 11:45	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 08:40 Client Sample ID: FB 102010 Received: 22-Oct-10 SVL Sample ID: W0J0606-19 (Ground Water) Sample Report Page 1 of 1

Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 < 0.30 mg/L 0.30 0.05 W043369

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

John Kern Laboratory Director FEH

10/25/10 22:05

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0606 Bisbee, AZ 85603 Reported: 05-Nov-10 13:16

Sampled: 20-Oct-10 08:45 Client Sample ID: EQB 102010 Received: 22-Oct-10 SVL Sample ID: W0J0606-20 (Ground Water) Sample Report Page 1 of 1

	S VE Sumple 1B. 1100	occo zo (Croana v	uto. j	5	ampic report	1 age 1 of 1		Sample		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatogra	phy								

0.30

0.05

W043369

FEH

10/25/10 22:17

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

< 0.30

John Ken

Sulfate as SO4

John Kern

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0J0606**Reported: 05-Nov-10 13:16

Quality Cont	rol - BLANK Data								
Method	Analyte	Units	Result	MDL	ľ	MRL	Batch ID	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatogr	raphy							
EPA 300.0	Sulfate as SO4	mg/L	< 0.30	0.05	(0.30	W043369	25-Oct-10	
Quality Cont	rol - LABORATORY	CONTROL SAM	IPLE Data						
Method	Analyte	Units	LCS Result	LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatogr	raphy							
EPA 300.0	Sulfate as SO4	mg/L	9.92	10.0	99.2	90 - 110	W043369	25-Oct-10	
Quality Cont	rol - DUPLICATE Dat	ta							
Method	Analyte	Units	Duplicate Result	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes

Quality Contro	ol - MATRIX SPIKE	Data								
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatog	raphy								
EPA 300.0	Sulfate as SO4	mg/L	27.8	17.2	10.0	106	90 - 110	W043369	25-Oct-10	
EPA 300.0	Sulfate as SO4	mg/L	10.0	< 0.30	10.0	99.1	90 - 110	W043369	25-Oct-10	

17.2

0.1

20

W043369

25-Oct-10

Notes and Definitions

17.2

D2.	Sample required dilution due to high concentration of target analyte	e.

LCS Laboratory Control Sample (Blank Spike)

RPD Relative Percent Difference

Dissolved Anions by Ion Chromatography

Sulfate as SO4

EPA 300.0

UDL A result is less than the detection limit

R > 4S % recovery not applicable, sample concentration more than four times greater than spike level

< RL A result is less than the reporting limit

MRL Method Reporting Limit
MDL Method Detection Limit

N/A Not Applicable

SVL holds the following certifications: AZ:0538, **CA**:2080, **CO**:ID00019, **FL(NELAC)**:E87993, **ID**:ID00019 & ID00965 (Microbiology), **NV**:ID000192007A, **WA**:1268, **WY**:ID00019

Work order Report Page 22 of 22

Freeport McMoRan - Bisbee

36 West Hwy 92

Project Name: Copper Queen Branch Sulfate Mitigation Order
Work Order: W0J0608

Bisbee, AZ 85603 Reported: 05-Nov-10 09:40

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
EAST	W0J0608-01	Ground Water	20-Oct-10 13:45	RG	22-Oct-2010
MCCONNELL 265	W0J0608-02	Ground Water	20-Oct-10 14:10	BD	22-Oct-2010
FULTZ	W0J0608-03	Ground Water	20-Oct-10 17:04	BD	22-Oct-2010
SCHWARTZ	W0J0608-04	Ground Water	20-Oct-10 16:32	RG	22-Oct-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0608 Bisbee, AZ 85603 Reported: 05-Nov-10 09:40

Sampled: 20-Oct-10 13:45 Client Sample ID: EAST Received: 22-Oct-10 SVI. Sample ID: W0.10608-01 (Ground Water) Sample Report Page 1 of 1

	3 v L Sample 1D. VV030008-01 (Ground vvater)					rage I of I		Sampled By: RG		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatograp	phy								
EPA 300.0	Sulfate as SO4	12.1	mg/L	1.50	0.26	5	W043366	FEH	10/26/10 18:27	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0608 Bisbee, AZ 85603 Reported: 05-Nov-10 09:40

Sampled: 20-Oct-10 14:10 Client Sample ID: MCCONNELL 265 Received: 22-Oct-10 SVL Sample ID: W0J0608-02 (Ground Water) Sample Report Page 1 of 1

	S VE Sumple 12: 11000	· · · · · · · ·		1 age 1 of 1	Sampled By: BD					
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved An	ions by Ion Chromatograp	ohy								
EPA 300.0	Sulfate as SO4	775	mg/L	15.0	2.65	50	W043366	FEH	10/26/10 18:55	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0608 Bisbee, AZ 85603 Reported: 05-Nov-10 09:40

Sampled: 20-Oct-10 17:04 Client Sample ID: FULTZ Received: 22-Oct-10 SVI. Sample ID: W0.10608-03 (Ground Water) Sample Report Page 1 of 1

	5 v.E. Sample 1D. VV030000-03 (Ground vvater)					rage 1 of 1		Sampled By: BD		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anion	ns by Ion Chromatogra	phy								
EPA 300.0	Sulfate as SO4	54.7	mg/L	1.50	0.26	5	W043366	FEH	10/26/10 19:05	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0J0608 Bisbee, AZ 85603 Reported: 05-Nov-10 09:40

Sampled: 20-Oct-10 16:32 Client Sample ID: **SCHWARTZ** Received: 22-Oct-10 SVI. Sample ID: W0.10608-04 (Ground Water) Sample Report Page 1 of 1

	BVE Sample 1D. WOO	valei j	Sample Report 1 age 1 of 1				Sampled By: RG			
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Ani	Dissolved Anions by Ion Chromatography									
EPA 300.0	Sulfate as SO4	147	mg/L	1.50	0.26	5	W043366	FEH	10/26/10 19:14	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0J0608**Reported: 05-Nov-10 09:40

Quality Contr	Quality Control - BLANK Data											
Method	Analyte	Units	Result	MDL	MRL	Batch ID	Analyzed	Notes				
Dissolved Anio	ns by Ion Chromatogi	raphy										
EPA 300.0	Sulfate as SO4	mg/L	< 0.30	0.05	0.30	W043366	28-Oct-10					

Quality Cont	Quality Control - LABORATORY CONTROL SAMPLE Data											
Method	Analyte	Units	LCS Result	LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes			
Dissolved Anio	ons by Ion Chromatog Sulfate as SO4	raphy mg/L	10.1	10.0	101	90 - 110	W043366	26-Oct-10				

Quality Control - DUPLICATE Data											
Method	Analyte	Units	Duplicate Result	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes		
Dissolved Anio	ons by Ion Chromatogi	anhv									
EPA 300.0	Sulfate as SO4	mg/L	31.0	31.0	0.2	20	W043366	26-Oct-10			

Quality Control - MATRIX SPIKE Data											
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes	
Dissolved Anio	ons by Ion Chromatog	raphy									
EPA 300.0	Sulfate as SO4	mg/L	41.6	31.0	10.0	106	90 - 110	W043366	26-Oct-10		
EPA 300.0	Sulfate as SO4	mg/L	45.4	35.0	10.0	105	90 - 110	W043366	27-Oct-10		

Notes and Definitions

D2	Sample required dilution due to high concentration of target analyte.
LCS	Laboratory Control Sample (Blank Spike)
RPD	Relative Percent Difference
UDL	A result is less than the detection limit
R > 4S	% recovery not applicable, sample concentration more than four times greater than spike level
<rl< td=""><td>A result is less than the reporting limit</td></rl<>	A result is less than the reporting limit
MRL	Method Reporting Limit
MDL	Method Detection Limit
N/A	Not Applicable

SVL holds the following certifications: **AZ**:0538, **CA**:2080, **CO**:ID00019, **FL**(**NELAC**):E87993, **ID**:ID00019 & ID00965 (Microbiology), **NV**:ID000192007A, **WA**:1268, **WY**:ID00019

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92
Bisbee, AZ 85603
Work Order: **W0K0242**Reported: 22-Nov-10 09:33

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
AWC-05	W0K0242-01	Ground Water	04-Nov-10 09:55	BD	09-Nov-2010
AWC-03	W0K0242-02	Ground Water	04-Nov-10 10:08	BD	09-Nov-2010
AWC-04	W0K0242-03	Ground Water	04-Nov-10 10:16	BD	09-Nov-2010
AWC-02	W0K0242-04	Ground Water	04-Nov-10 10:28	BD	09-Nov-2010
NWC-04	W0K0242-05	Ground Water	04-Nov-10 10:58	BD	09-Nov-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0242 Bisbee, AZ 85603 Reported: 22-Nov-10 09:33

Sampled: 04-Nov-10 09:55 Client Sample ID: AWC-05 Received: 09-Nov-10 SVL Sample ID: W0K0242-01 (Ground Water)

Sample Report Page 1 of 1 Sampled By: BD Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 18.4 mg/L 0.30 0.05 W046145 FEH 11/09/10 18:51

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0242 Bisbee, AZ 85603 Reported: 22-Nov-10 09:33

Sampled: 04-Nov-10 10:08 Client Sample ID: AWC-03 Received: 09-Nov-10

SVL Sample ID: W0K0242-02 (Ground Water) Sample Report Page 1 of 1 Sampled By: BD

Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 46.3 mg/L 0.30 0.05 W046145 FEH 11/09/10 19:15

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0242 Bisbee, AZ 85603 Reported: 22-Nov-10 09:33

Sampled: 04-Nov-10 10:16 Client Sample ID: AWC-04 Received: 09-Nov-10

SVL Sample ID: W0K0242-03 (Ground Water) Sample Report Page 1 of 1 Sampled By: BD

0.05

W046145

FEH

11/09/10 19:23

Method Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography

0.30

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

24.0

John Ken

Sulfate as SO4

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0242 Bisbee, AZ 85603 Reported: 22-Nov-10 09:33

Sampled: 04-Nov-10 10:28 Client Sample ID: AWC-02 Received: 09-Nov-10

SVL Sample ID: W0K0242-04 (Ground Water) Sample Report Page 1 of 1 Sampled By: BD

Method Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 18.8 mg/L 0.30 0.05 W046145 FEH 11/09/10 19:31

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken John Kern

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92
Bisbee, AZ 85603

Work Order: W0K0242
Reported: 22-Nov-10 09:33

Client Sample ID: NWC-04

SVI, Sample ID: W0K0242-05 (Ground Water)

Sample Report Page 1 of 1

Sample Report Page 1 of 1

	SVE Sample ID. WOROZ4Z-03 (Glound Water)					Sampled By:					
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Dissolved Anion	ns by Ion Chromatogra	phy									
EPA 300.0	Sulfate as SO4	197	mg/L	3.00	0.53	10	W046145	FEH	11/09/10 14:14	D2	

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Kern

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0K0242**Reported: 22-Nov-10 09:33

- · ·	O . I BE ITEM									
Quality C	Control - BLANK Data									
Method	Analyte	Units	Resul	t	MDL]	MRL	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	Anions by Ion Chromatogr Sulfate as SO4	raphy mg/L	<0.30		0.05	(0.30	W046145	09-Nov-10	
Quality (Control - LABORATORY (CONTROL SA	MPLE Data							
Method	Analyte	Units	LCS Result		LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved EPA 300.0	Anions by Ion Chromatogr Sulfate as SO4	raphy mg/L	10.1		10.0	101	90 - 110	W046145	09-Nov-10	
Quality (Control - DUPLICATE Dat	a								
Method	Analyte	Units	Duplica Result	te	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes
Dissolved .	Anions by Ion Chromatogr	aphy				0.2		****	00.31 10	
EPA 300.0	Sulfate as SO4	mg/L	18.4		18.4	0.2	20	W046145	09-Nov-10	
EPA 300.0			18.4		18.4	0.2	20	W046145	09-Nov-10	
EPA 300.0	Sulfate as SO4 Control - MATRIX SPIKE Analyte		Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	W046145 Batch ID	Analyzed	Notes
Quality (Control - MATRIX SPIKE	Data Units	Spike		Spike	%	Acceptance			Notes
Quality (Method	Control - MATRIX SPIKE Analyte Anions by Ion Chromatogr	Data Units	Spike Result	Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality (Method	Control - MATRIX SPIKE Analyte Anions by Ion Chromatogr	Units Taphy mg/L	Spike Result	Result (R) 18.4 s and Defi	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality (Method Dissolved EPA 300.0	Analyte Anions by Ion Chromatogr Sulfate as SO4	Units Taphy mg/L e to high concent	Spike Result	Result (R) 18.4 s and Defi	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality C Method Dissolved EPA 300.0	Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due	Units Taphy mg/L e to high concent	Spike Result	Result (R) 18.4 s and Defi	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality (Method Dissolved EPA 300.0 D2 LCS	Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Units Taphy mg/L e to high concent (Blank Spike)	Spike Result	Result (R) 18.4 s and Defi	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality C Method Dissolved EPA 300.0 D2 LCS RPD	Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Relative Percent Difference	Units Taphy mg/L e to high concent (Blank Spike)	Spike Result 29.4 Notes ration of target a	Result (R) 18.4 s and Definationallyte.	Spike Level (S) 10.0 nitions	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Quality (Method Dissolved EPA 300.0 D2 LCS RPD UDL	Analyte Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Relative Percent Difference A result is less than the detect	Units Taphy mg/L e to high concent (Blank Spike) ction limit ample concentrate	Spike Result 29.4 Notes ration of target a	Result (R) 18.4 s and Definationallyte.	Spike Level (S) 10.0 nitions	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved EPA 300.0 D2 LCS RPD UDL R > 4S	Analyte Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Relative Percent Difference A result is less than the detect % recovery not applicable, so	Units Taphy mg/L e to high concent (Blank Spike) ction limit ample concentrate	Spike Result 29.4 Notes ration of target a	Result (R) 18.4 s and Definationallyte.	Spike Level (S) 10.0 nitions	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved EPA 300.0 D2 LCS RPD UDL R > 4S <rl< td=""><td>Analyte Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Relative Percent Difference A result is less than the detect % recovery not applicable, so A result is less than the report</td><td>Units Taphy mg/L e to high concent (Blank Spike) ction limit ample concentrate</td><td>Spike Result 29.4 Notes ration of target a</td><td>Result (R) 18.4 s and Definationallyte.</td><td>Spike Level (S) 10.0 nitions</td><td>% Rec.</td><td>Acceptance Limits</td><td>Batch ID</td><td>Analyzed</td><td>Notes</td></rl<>	Analyte Analyte Anions by Ion Chromatogr Sulfate as SO4 Sample required dilution due Laboratory Control Sample (Relative Percent Difference A result is less than the detect % recovery not applicable, so A result is less than the report	Units Taphy mg/L e to high concent (Blank Spike) ction limit ample concentrate	Spike Result 29.4 Notes ration of target a	Result (R) 18.4 s and Definationallyte.	Spike Level (S) 10.0 nitions	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92

Bisbee, AZ 85603

Work Order: W0K0353

Reported: 29-Nov-10 16:06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
BMO-2010 3B	W0K0353-01	Ground Water	10-Nov-10 10:20	LH	12-Nov-2010
BMO-2010 3M	W0K0353-02	Ground Water	10-Nov-10 15:15	LH	12-Nov-2010
DUP 20101110	W0K0353-03	Ground Water	10-Nov-10 15:15	LH	12-Nov-2010
BMO-2010 1M	W0K0353-04	Ground Water	11-Nov-10 09:40	LH	12-Nov-2010
BMO-2010 2M	W0K0353-05	Ground Water	11-Nov-10 10:55	LH	12-Nov-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0353 Bisbee, AZ 85603 Reported: 29-Nov-10 16:06

Sampled: 10-Nov-10 10:20 Client Sample ID: BMO-2010 3B Received: 12-Nov-10

SVL Sample ID: W0K0353-01 (Ground Water) Sample Report Page 1 of 1 Sampled By: LH

Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 14.9 mg/L 0.30 0.05 W047079 FEH 11/18/10 19:01

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0353 Bisbee, AZ 85603 Reported: 29-Nov-10 16:06

Sampled: 10-Nov-10 15:15 Client Sample ID: BMO-2010 3M Received: 12-Nov-10 SVL Sample ID: W0K0353-02 (Ground Water) Sample Report Page 1 of 1

Sampled By: LH Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 12.6 mg/L 0.30 0.05 W047079 FEH 11/18/10 19:11

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0353 Bisbee, AZ 85603 Reported: 29-Nov-10 16:06

Sampled: 10-Nov-10 15:15 Client Sample ID: DUP 20101110 Received: 12-Nov-10 SVL Sample ID: W0K0353-03 (Ground Water) Sample Report Page 1 of 1

Sampled By: LH Method Analyte Result RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography

EPA 300.0 Sulfate as SO4 12.7 mg/L 0.30 0.05 W047079 FEH 11/18/10 19:21

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0353 Bisbee, AZ 85603 Reported: 29-Nov-10 16:06

Sampled: 11-Nov-10 09:40 Client Sample ID: BMO-2010 1M Received: 12-Nov-10

3.00

0.53

W047079

FEH

11/18/10 19:31

SVL Sample ID: W0K0353-04 (Ground Water) Sample Report Page 1 of 1 Sampled By: LH Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes Dissolved Anions by Ion Chromatography

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

98.0

John Ken

Sulfate as SO4

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0K0353 Bisbee, AZ 85603 Reported: 29-Nov-10 16:06

Sampled: 11-Nov-10 10:55 Client Sample ID: BMO-2010 2M Received: 12-Nov-10

SVL Sample ID: W0K0353-05 (Ground Water) Sample Report Page 1 of 1 Sampled By: LH Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes

Dissolved Anions by Ion Chromatography EPA 300.0 Sulfate as SO4 935 mg/L 15.0 W047079 FEH 11/18/10 19:42 2.65

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee

36 West Hwy 92 Bisbee, AZ 85603 Project Name: Copper Queen Branch Sulfate Mitigation Order

Work Order: **W0K0353**Reported: 29-Nov-10 16:06

Quality Con	trol - BLANK Data								
Method	Analyte	Units	Result	MDL		MRL	Batch ID	Analyzed	Notes
Dissolved Ani	ons by Ion Chromatog	raphy							
EPA 300.0	Sulfate as SO4	mg/L	< 0.30	0.05		0.30	W047079	18-Nov-10	
Quality Con	trol - LABORATORY	CONTROL SAM	MPLE Data						
Method	Analyte	Units	LCS Result	LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Name 1 Amil	ons by Ion Chromatog	ranhy							

Method	Analyte	Units	Duplicate Result	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes
Dissolved Anions & EPA 300.0	oy Ion Chromatograph Sulfate as SO4	y mg/L	0.95	1.00	5.0	20	W047079	19-Nov-10	

Quality Cont	rol - MATRIX SPIKE	Data								
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved Anio	ons by Ion Chromatog	raphy								
EPA 300.0	Sulfate as SO4	mg/L	10.5	1.00	10.0	95.1	90 - 110	W047079	19-Nov-10	
EFA 300.0	Bullate as BO4	mg/L	10.5	1.00	10.0	75.1	70 110	1101/0/2	17 1101 10	

Notes and Definitions

D2	
D2.	Sample required dilution due to high concentration of target analyte.

LCS Laboratory Control Sample (Blank Spike)

RPD Relative Percent Difference

UDL A result is less than the detection limit

R > 4S % recovery not applicable, sample concentration more than four times greater than spike level

<RL A result is less than the reporting limit

MRL Method Reporting Limit
MDL Method Detection Limit

N/A Not Applicable

Freeport McMoRan - Bisbee

36 West Hwy 92

Project Name: Copper Queen Branch Sulfate Mitigation Order
Work Order: W0L0468

Bisbee, AZ 85603 Reported: 03-Jan-11 11:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Sampled By	Date Received
NWC-04	W0L0468-01	Ground Water	14-Dec-10 10:30	BD	21-Dec-2010
FB20101214	W0L0468-02	Ground Water	14-Dec-10 10:56	BD	21-Dec-2010
EQB20101214	W0L0468-03	Ground Water	14-Dec-10 11:05	BD	21-Dec-2010

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0L0468 Bisbee, AZ 85603 Reported: 03-Jan-11 11:59

Sampled: 14-Dec-10 10:30 Client Sample ID: NWC-04 Received: 21-Dec-10 SVL Sample ID: W0I 0468-01 (Ground Water)

	SVL Sample ID. WULC	0466-01 (Ground)	water)	3	ampie Keport	Page 1 of 1		Sample	ed By: BD	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anior	ns by Ion Chromatograp	phy								
EPA 300.0	Sulfate as SO4	182	mg/L	3.00	0.53	10	W052188	FEH	12/23/10 14:58	D2

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0L0468 Bisbee, AZ 85603 Reported: 03-Jan-11 11:59

Sampled: 14-Dec-10 10:56 Client Sample ID: FB20101214 Received: 21-Dec-10

SVL Sample ID: W0L0468-02 (Ground Water) Sample Report Page 1 of 1 Sampled By: BD Method Analyte Result Units RLDilution Batch Analyst Analyzed Notes **Dissolved Anions by Ion Chromatography**

EPA 300.0 Sulfate as SO4 < 0.30 mg/L 0.30 0.05 W052188 FEH 12/23/10 15:07

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

John Ken

EPA 300.0

One Government Gulch - PO Box 929 Kellogg ID 83837-0929 (208) 784-1258 Fax (208) 783-0891

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Work Order: W0L0468 Bisbee, AZ 85603 Reported: 03-Jan-11 11:59

Sampled: 14-Dec-10 11:05 Client Sample ID: EQB20101214 Received: 21-Dec-10 SVL Sample ID: W0L0468-03 (Ground Water) Sample Report Page 1 of 1

0.05

W052188

FEH

12/23/10 15:25

	S TE Sumple 13: 1102	o to o o o o o o o o o o o o o o o o o	rator j	5	ampic report	1 age 1 of 1		Sample	1 By: BD	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Dissolved Anio	ns by Ion Chromatogra	phy								

0.30

mg/L

This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.

< 0.30

Laboratory Director

John Ken

Sulfate as SO4

John Kern

Freeport McMoRan - Bisbee Project Name: Copper Queen Branch Sulfate Mitigation Order

36 West Hwy 92 Bisbee, AZ 85603

N/A

Not Applicable

Work Order: **W0L0468**Reported: 03-Jan-11 11:59

<u> </u>	N									
Quality C	Control - BLANK Data									
Method	Analyte	Units	Result		MDL		MRL	Batch ID	Analyzed	Notes
	Anions by Ion Chromatograp									
EPA 300.0	Sulfate as SO4	mg/L	< 0.30		0.05		0.30	W052188	23-Dec-10	
Quality C	Control - LABORATORY CO	NTROL S.	AMPLE Data							
Method	Analyte	Units	LCS Result		CS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Dissolved /	Anions by Ion Chromatograp	hv								
EPA 300.0	Sulfate as SO4	mg/L	9.70	1	0.0	97.0	90 - 110	W052188	23-Dec-10	
Quality C	Control - DUPLICATE Data									
Method	Analyte	Units	Duplicate Result		Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes
Dissolved	Anions by Ion Chromatogran	hv								
EPA 300.0	Anions by Ion Chromatograp Sulfate as SO4	mg/L	< 0.30	<	0.30	UDL	20	W052188	23-Dec-10	
Quality (Control - MATRIX SPIKE Da	nta								
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
D:ld	<u> </u>	J								
EPA 300.0	Anions by Ion Chromatograp Sulfate as SO4	mg/L	10.1	<0.30	10.0	101	90 - 110	W052188	23-Dec-10	
			Notes a	and Defini	tions					
D2	Sample required dilution due to	high concen	tration of target ana	alyte.						
LCS	Laboratory Control Sample (Bl	ank Spike)								
RPD	Relative Percent Difference									
UDL	A result is less than the detection	on limit								
R > 4S	% recovery not applicable, sam	ple concentra	ation more than four	r times great	er than spike le	/el				
<rl< td=""><td>A result is less than the reporting</td><td>ng limit</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rl<>	A result is less than the reporting	ng limit								
MRL	Method Reporting Limit									
MDL	Method Detection Limit									

APPENDIX C GROUNDWATER SAMPLING FORMS

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 0.65 4 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Comments Elapsed Time Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 7.03 12:35 20.6 1229 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Sample ID Time Containers Type ANderson

Additional Comments:	Sample from Tank	

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: AW 6-02 Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 8 2.61 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Comments **Elapsed Time** Conductance Discharge Rate Time (°C) (SU) (min) (µS/cm) (gallons) (gpm) フスニ 10:30 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Time Sample ID Containers Type 300.0 AWLOZ 250 10:28 **Additional Comments:**

CLEAR A
CREEK ST CREEK ASSOCIATES

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project Na: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 4 0.65 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.0B Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Elapsed Time Conductance Comments Rate Discharge Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 20.8 7.80 452.3 10:04 SAMPLE INFORMATION No. of Container Comments Analysis Method Preservative Volume Time Sample ID Containers Type 10:08 200 **Additional Comments:**

Project No:	055038				Client:	reeport Coppe		h .	
Task No:	1.0			I	Date:	11/4/10	<u> </u>		
Well ID:	ACUC-	04		V	Weather: Sunsy 600				
ADWR No:				(Sampler:	らづか			
				WELL DATA					
	<u>IRTORIEUMANNIELEIGENSSELEITERINA</u>				Naminal	Casing C Size (inches)	apacity Gallons per Li	near Foot	
Well Depth (ft	bls):				IAOMBIAL	2	0.16		
Casing Diame	ter (in):					5	0.65 1.02	i i	
Static Water L	evel (ft bmp):					6 8	1.47 2.61		
Casing Volum	e (aals):					10	4.08	1	
_					Casing	Volume = gallons/i	oot * water column	n (feet)	
3 Casing Volu	mes (gais):			D.SAMPLING	EDATA				
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents	
10:12				7.41	20,3	593.2			
						·			
			SAN	IPLE INFOR					
s	ample ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments	
21.	, c-04	10:16	Pol	250mL	Í	300.0	Ø		
7,00	<i>/</i>	1 1 1 1 1	1						
		1	<u> </u>	<u></u>					
Additional Co	onments.								

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: AWC-05 Weather: Well ID: Sampler: ADWR No: **WELL DATA** Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge рΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 427.1 20.7 7.92 9.50 SAMPLE INFORMATION Container No. of Comments Preservative Analysis Method Volume Sample ID Time Containers Type 9:55 300.0 AWC-05

Additional Comments:	
· · · · · · · · · · · · · · · · · · ·	······································

Groundwater Sampling Form Freeport Copper Queen Branch 055038 Project No: Date: Task No: 986 Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (it bis): 0.16 0.65 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp рΗ Comments Elapsed Time Conductance Discharge Rate (°C) Time (SU) (min) (µS/cm) (gallons) (gpm) 9:16 918.6 22.6 7.66 10 300 30 9:40 72.6 936.2 7.61 10 500 50 10:00 22.4 944.0 700 70 10 10:20 948.7 22.4 7.60 900 90 10:40 10 SAMPLE INFORMATION No. of Comments Preservative Container Analysis Method Volume Time Sample ID Containers Type 300-0 500 BANK 986 Pol

Additional Comments:	SWC 230-24 at BANKS 981	
Additional Comments.		
	1 casing vol 5 90 gal. 3 casing vol 5 900 gal	····
<u> </u>	Z cosina) val 57 900 Jal	
	<u> </u>	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project Na: Date: Task No: BANKS Weather: Well ID: Sampler: ADWR No: WELL DATA Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 Casing Diameter (in): 1.02 5 230.29 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total pΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (uS/cm) (gallons) (gpm) SAMPLE INFORMATION Container Analysis Method Preservative Comments Volume Sample ID Time Containers Type Additional Comments:

Additional Carattette	
Additional Comments:	
· · · · · · · · · · · · · · · · · · ·	
	Market Control of the

Groundwater Sampling Form Freeport Copper Queen Branch Client Project Na: 055038 10-18-10 Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 5 1.02 6 1.47 Static Water Level (ft bmp): 8 2.61 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total рΗ Temp Elapsed Time Comments Conductance Discharge Time Rate (SU) (°C) (min) (µS/cm) (gallons) (gpm) 10:40 22.6 1672 6.38 10 10 100 10:50 1696 10:55 10 150 6.46 105 23.1 Pumped Dry 4-3 10:57 6.47 24.3 0.5 702 1:00 SAMPLE INFORMATION Container Preservative Comments Analysis Method Volume Sample ID Time Containers Туре Poly 300.0 BIMA 500 11:10

Additional Comments:	Pump 6-7-00	drjed	d over	pumping	at ful	(capaci	kg · Sle	<u> </u>
	<u> </u>		7		,			
WHAT I SHOW I SH								

	Groundwat	ler Samp	ling Form				A	
roject No:					Client: F	reeport Coppe	r Queen Bran	zh
-				ļ.	Date:	10-5-10		
ask No:	0,000	200 5	2		Weather:	Partly Close	14,68°	
Vell ID:	BM0-2	002-5	2		<u> </u>	hristanhir l	Shower	7
DWR No:			*.	WELL DA		A State of the Sta	<u> Committee de la committee de</u>	
			T.				Capacity	I Sant
Vell Depth (ft b)ls): _	2	85'			ize (inches) 2	Gallons per 0.1	6 Cinear Pool
			<u> </u>			4	0.6 1.0	
lesing Diamet	or (in):		1470			5	1.4	17
itatic Water Le	vel (ft bmp):					8	2.6 4.0	
Sasing Volume	e (gale):		140.7			10 <u>)</u> 3 Volume = gallons		
		4	122.1			1 Aoinme = 6sisous	NAME OF THE PERSON	***************************************
Casing Volum	Han (Kale).		F-1E	LD SAMPL	NG DATA			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (galions)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Com	nents
0940		filtri				,		
0945		27	135	6.78	720	$\frac{223}{1}$		
0955	1 15	3.7	405	1.33	337	327		
1005	25	27	475	10005	di di J			
7								
	· · · · · · · · · · · · · · · · · · ·							
			S	ample info	RMATION			
Sa	mple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments
@ 000	2008-56	1003	plastic	250 mi	1	EPA 300.0	none	filtered
10/10-3	100x-50	11/97	- Preserv					
		<u> </u>						
			_					
					1			
Additional C	omments:							
138								
-,							·····	

	Groundwat	er Sampl	ing Form	·				
include Man					Client: £	reeport Copps	r Queen Brand	:h
roject No:					Date:	10-5-10		
ask No:	0000	200 5	`^^		Weather:	Parthe Coa	di-les	/
Vell ID:	BMO-2	108-5	<u> </u>			cristophy L	Sheeman	,
DWR No:				WELL DA		the state of the s		
				AA Property man	•	Casing (Capacity	
Neil Depth (ft b	ist:	4	150		Nominal \$	ize (inches) 2	Gallons per l 0.1	inear Foot 6
			-11			4	0.5 1.0	
Casing Diamete	er (in): _	140	68			5 6	1.4	
Static Water Lo	vel (ft bmp):	THE RESERVE OF THE PERSON NAMED IN	Mark Comment			8	2.6 4.0	
Casing Volume	(gals):	· ·	307.3			10 L 3 Volume = gallons		
		C	121.9		Casin	Aolfille = Britoire	11001 11001	
3 Cesing Volun	ián (fórsa).		FIE	LD SAMPL	ING DATA			
Time	Elapsed Time (min)	Discharge Rate	Total Discharge	pH (8U)	Temp (°C)	Specific Conductance (µS/cm)	Comm	nents
200	Vitari	(gpm)	(gallons)					
0830	+-	18	90	6.85	17/21	60/		
9335	17	108	450	4.87	2.4	108		
0015	45	18	810	6.83	72.7	603		
0025	35	18	990	6.81	1247	616		
		<u> </u>					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				ADERS E EME	ORMATION			
Sa	mple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comment
I	2008-5M	0925	plastic	250 ml	1	EPA 300.0	none	filtered
12/10-	100-11	1 10 100	ps term and					
						`		
Additional Co								
	301.3							

	Groundwa	ter Samp	ling Form							
					Cilent:	Freeport Coppe	r Queen Bran	sh		
roject No:					Date:	10-5-	10			
ask No:	amo	7-2008	1-10		Weather:	enther: Partly Claudy - 59°				
Vell ID:	DIT	<u>ן טער י</u>	1 6 D		Sampler: /	ha stoller	1 Sharman			
DWR No:				AELL DA		All Fillips				
			- 1				Capacity Gallons per	Imper Foot		
Veli Depth (ft l	pis):	2	45		Nominal S	ize (inches) 2	0.1	8		
Casing Diemet	er (in):	0	511			4	0.6 1.0			
		19	2,50			6	1.4	17		
Static Water Le	evel (it bimp):	- Jane	774			8 10	2.6 4.0			
Casing Volume	e (gals):					g Volume = gallons	/foot * water colu	ımın (feet)		
3 Casing Volut	mes (gals):	(222	LD SAMPLI						
				LD State		Specific		_		
Time	Elapsed Time (min)	Olscharge Rate (gpm)	Total Discharge (gallons)	рН (\$U)	Temp (°C)	Conductance (µS/cm)	Comr	nents		
0720					000	399		······································		
0730	10	5.1	51	6.99	209	402				
0740	20	5.1	102	7.04	21.0	403				
9750	30	5.1	704	7.02	210	405				
9800	140	5.1	230	5.05	210	407				
9805	172	7:4								
			S/	ample info	ORMATION			·		
Sa	imple ID	Time	Container Type	Volume	No. of Containers	Analysis Hethod	Preservative	Comments		
BM0-2	1008-6B	0805	plastic	250 mi	11	EPA 300.0	none	filtered		
<u></u>										
A -4-444 1 0	'nmmesta:									
Additional C										
· · · · · · · · · · · · · · · · · · ·										

ساديد بيسي

--

Groundwat	ter Sampl	ing Form	•				
			C	Client: <u>F</u>	reeport Coppe	Queen Brand	h
			E)ate:	10-5-11	2	
	· 9	/ M		_			2°
ISMO-	2000-	6 [1]		7	Let alex	7.	
					usiepin e.		
			1			Capacity	Impar Font
ols):	45	0'		Nominal S		0.1	8
			Ì	•	4		
	19	7 96			5 6	1.4	7
vel (ft bmp):					8		
(gals):	262	2.1				/foot * water colu	mn (feet)
nes (gals):	78	6,3					
	7 0	7(E	LD SAMPLI	NG DATA	Snarlfic T		
Elapsed Time (min)	Discharge Rate	Total Discharge (callons)	pH (SU)	Temp (°C)	Conductance (µS/cm)	Comm	nents
	VS Party				52/		
10	21	210	To 82	212	720		
2a	21	420			- 123 - 		
	<u> </u>	630	19:30	71.2	720		
<u> </u>	4/_		<i>6-07</i>				
		\$	ample info				
mple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservativa	Comment
-2008-6M	0710	plastic	250 ml	11	EPA 300.0	поле	filtered
					<u> </u>		
,,,,,,,,							
	12-						
∧	/. S D						
omments: 0	130						
	BMO- Dis): Provide (R bmp): Provide (R bmp):	### ### ##############################	er (in): I	BMO - 2008 - 6 M WELL DA	BMO - 2008 - 6 M Weather: Date: Weather: Sampler: 6	Client: Freeport Coppet Date:	Client: Fresport Copper Queen Brance Date: JO-5-10 Weather: Party Cloudy — S Sampler: Christophy L. Shermon WELL DATA Casing Capacity Nominal Size (Inches) Gailons per 1 4 0.8 9 (gails): J12.9

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: BMO-8010-11 Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) 550 Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pН Temp Comments Elapsed Time Conductance Discharge Rate Time (°C) (SU) (µS/cm) (min) (gailons) (gpm) nater is clear + colorless ц át tr. 1/ Pump or 10 SAMPLE INFORMATION No. of Comments Container Analysis Method Preservative Volume Time Sample ID Containers Type **Additional Comments**

5	CLEAR S

Project No:)55038				Client: <u>F</u>	reeport Coppe	Queen Branch	1
Fask No:	1.0			ļ	Date:	11/11/10		
Well ID:	Rm -	2010	-2m		Weather:	Sunny ~70°F		
ADWR No:					Sampler:	XPH .		
				WELL DAT	X - Line			
		280			Nominal S	Casing C	apacity Gallons per Lir	near Foot
Well Depth (ft bls)	_	<u> </u>				2	0.16 0.65	
Casing Diameter	(in): _	000 (2111			5	1.02 1.47	
Static Water Leve	el (ft bmp):	daz.	14			6 8	2.61	
Casing Volume (g	gals):	118				10	4.08	
3 Casing Volume	s (gals):	35		uminanssaussatellustaukssa ta		Volume = gallons/	foot * water column	r (leer)
				D SAMPLIN	GI DATA			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp Cor√F	Specific Conductance (µS/cm)	Comme	ents
10:20		16				105		
10:85	5	190	<u>60</u>	7.05	67.5	1.85	water clear	<u> </u>
10:30	10	18.0	180	(.00	68.7	199	11	0
1035	15	1371	180 -	6,98	686	1,79	11	11
10.70	25	12.0	300	6.93	69,4	1,77	11	Py
10:50	30	120	360	0.97	69.0	1.80_	//	//
		-						
		2010-11 Nacrol Halle (1915) 1830 183						
				IPLE INFOR	MATION No. of			
Sam	ple ID	Time	Container Type	Volume	Containers	Analysis Method	Preservative	Comments
8m0-8	010 - am	10:55	Poly	260ml		300.0	mne	
Additional Com	ments:						1	
	Meas	wings	pint is	<u>15'</u>	above 1	top of w	·Ol casin	<u>e</u>
		J ¥					J	
							31	

	ncen20		JUITUAVAE	T.		reeport Coppe	r Queen Brancl	1
	055038				Date: 11/10/10			
Task No:	1.0	00.0.00			*****	Sunny ~65°f		
Well ID:		<u> 2010-</u>			•			
ADWR No:	55-	21997		niili kasima japa Jazira (San)	Sampler:	JRH.		
				WELL DAT		Casing C	anacity	
Well Depth (ft bls)):	330	•		Nominal S	Size (inches)	Gallons per Li	
		5"				2	0.16 0.65	
Casing Diameter	(in): _		~ · ·			5	1.02 1.47	
Static Water Leve	el (ft bmp):	115.8	<u>(()</u>			8	2.61	
Casing Volume (gals):	3185	<u>2 219</u>			10	4.08	
		G55	(G57		Casing	Volume = gallons/	foot * water column	ı (feet)
3 Casing Volume	s (gais). Basan maganasan			SAMPLIN	S DATA			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	(<i>pe</i>) o € Lemb	Specific Conductance (µS/cm)	Comme	ents
08:36								
00.30	***	6.5	304					
08:53	17	6,5	111	7.45	69,0°F	0.36	Water silty	4 Lnet cold
09:10	34	6.6	991	<u> 7.43</u>	69.9	0.38	Cleans + he	Now tint
09:27	1251	6.5	338	7.43	69.1	0.37	clear + ca)	` #
09:44	68	6.5	<u>442</u> 553	7,43 7,43	69.2 69.9	0.38	Clear + col	
10:01	85	672	55 3 663	7 113	70.1	0.3	Clear +6010	
10:18	109	6.5	7070-2					
								····
		,						
				naraj kwa kata je plajaj sesteti				
			SAM	PLE INFOR				
Sam	ple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments
Bmo-a	010-38	19:90	poly	250m	,	300,0	None	
Additional Com	ments:							
					<u> </u>	- , \ ·	11.17.41.	- II.
	Top of s				Shuy &	bont) n	Solution	one tru
	top of t	he cas	into (wel	Iseal). Well	sear 15.	$U \cup U \cup U$	
	. ^ ¥	inp poi	nt is o	15°0b	ove ca	SIMP ·		
		1 '				~		

Territ blov	055038		oungwai			Freeport Coppe	r Queen Branch	1
,				Date:	111010			
ask No:	DWO -				- Weather:	Sunny, ~65°F		
Vell ID:	<u> 5110-2010 3171</u>			Sampler:	11/11			
DWR No:		919966		WEILDAT				
		(CQ) /			Nominal	Casing C Size (inches)	apacity Gallons per Lir	near Foot
Vell Depth (ft bis	s): _	531'			2		0.16	
Casing Diameter	(in):	5"			4 5		0.65 1.02	
Static Water Lev	el (ft bmp):	แลวร์				6	1.47 2.61	
asing Volume (418				8 10	4.08	
		1236.8			Casing Volume = gallons/foot * water column (feet			r (feet)
Casing Volume	es (gais).			D SAMPLIN	G DATA			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents
10:15								
12:45	30	7.0	<u> 210</u>	7.59	73.2	0,32	Gear + Lnz	4 colour
13:15	60	7.0	<u> </u>	700	71.2	0.32	Clear W/ Ye	
13:45	90	7.0	630	7.63	1-4-4-	0.33	dearscol	1 02.1627
<u> 14:15</u>	1180		1050	7.65	1 - 17 - 17	0.32	81 2	7
15/15/150		50	1860	7.00	71.3	0.34	l)	1)
			SAN Container	ABLE INFOR	No. of			
San	nple ID	Time	Type	Volume	Containers	Analysis Method	Preservative	Comments
Rmo-s	2010-3m		Polu					
ے لیاناں ک			0.					
Additional Con	nments:							
- Tm	of som	direr	oct is 4	he wil	, measu	nn's point	t. This is C	14'ab
the	top of t	re wel	e seal.	Wellse	alis oc)/'=' /Me	asuring p	oint 13
	6/	5'abou	re top	of cas	ing.		<i>J'</i>	
		~	· · · · · ·		<u> </u>			
	DU	71.1CX	176					

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project Na: Date: Task No: Chambers Weather: Weli ID: Sampler: ADWR No: WELL DATA Gallons per Linear Foot Nominal Size (inches) 245 Well Depth (ft bis): 0.16 2 0.65 Casing Diameter (in): 1.02 5 1.47 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): ITITEDISAMPLING DATA Specific Discharge Total Temp pΗ Elapsed Time Comments Conductance Rate Discharge Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 14110 0470 8(11 16 412 0450 8 23,4 8,05 1414 0440 23,0 8,00 1416 SAMPLEINFORMATION No. of Container Comments Analysis Method Preservative Volume Time Sample ID Containers Type 1420 300,0 25041 POLY Chambers

1			<u> </u>			1	
-							
	Additional Comments:						
	AUGUNE COMMENS.						
			,			 	

							and the second
						i ·	CREEK S

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Partly Cloudy Weather. Well ID: Sampler: ADWR No: WELLDATA Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 8 2.61 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp Elapsed Time pΗ Comments Conductance Rate Discharge Time (SU) CONF (min) (uS/cm) (gallons) (gpm) 1607 7.03 0500 1612 0450 7.13 10 0450 73,2 15 10,5 1622 0450 20 180 73.1 9 1627 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Time Sample ID Containers Туре 300, to Poly 1630 (con)

Additional Comments:	
	·

Groundwater Sampling Form Freeport Copper Queen Branch Client Project No: 055038 Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot 220 Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 158,41 1.47 6 Static Water Level (ft bmp): 2.61 91 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 1138 2020 100 22,3 $i \circ$ 7,12 \mathcal{O} 1990 150 7:16 2114 10 15 200 7,15 2111 1990 10 20 980 250 20.9 7,16 25 10 203 SAMPLE INFORMATION No. of Container Analysis Method Comments Preservative Volume Sample ID 🐰 Time Containers Type 300,0 1207 100/4 125 N

Additional Comments:	

		Gr	oundwa ¹	****	***************************************			
Project No. 000000				Client:				
Task No:	10				Date:	10/18/10		
Well ID:	veil ID: Dudson			Weather. Partly Cloucly				
ADWR No:	6449	, 27			Sampler:	RG.		
				iÿ∕EUL DAT		Casing C	anaciv	
Well Depth (ft bis	s):	200			Nominal Size (inches)		Gallons per Linear Foot	
					2 4		0.16 0.65	
Casing Diameter		<u>0</u>				5	1.02 1.47	
Static Water Levi	el (ft bmp):	90,33)			8	2.61	
Casing Volume (gals):	<u>161 </u>				10 Volume = gallons/	4.08	
3 Casing Volume	es (gals):	483				y volume = galions/	ioot water column	
				DISAMPLIN	BIDATA E			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents
13/2 1327								
1332	5	15	75	6.64	73,6	1310		
1342	15	15	225	6.57	70,9	1240		
1347	20	15	300	6,46	70,8	1250		
1352	30 30	15	375 450	6.43	70,2	1260		
1357	1 20	1.7	1,0	<u> </u>				
					1.			
		<u> </u>						
	<u> </u>							
			SAY	TELENINES	RVATIONELL			
San	nple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments
Doctson		1400	poly	500m))	300.0		
NGC1381	Δ							
		<u> </u>						
Additional Com	iments:							
<u> </u>								

Project No: 055038					Client: Freeport Copper Queen Branch				
Task No:	1			Date:	10-19-10				
Well ID:	DUR	AZO			Weather:	SUNNY			
ADWR No:					Sampler:	DIN			
				Walldan					
	ensimise duran entis invendures nasco) / f			Casing Capacity Nominal Size (inches) Gallons per Li			near Foot	
Well Depth (ft bls)): 	N/A 6 h			2		0.16 0.65		
Casing Diameter	(in):	6				5	1.02		
Static Water Leve	el (ft bmp):	<u> </u>	<u> </u>			6	1.47 2.61		
Casing Volume (g	gals):					10	4.08		
3 Casing Volume	s (gals):				Casin	g Volume = gallons/i	oot * water column	(feet)	
				DISAMPLIN	GIDAVA				
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents	
15:05									
15:15	10	7.5	75	7.29	22.9	1100			
15:20	15	7.5	112	7.25 7.28	21.9	1105		ALIMANUS I LANGUISMAN .	
15:20	20	7,5	150	1.60		1112			
-			<u> </u>						
				TENTES.					
Sam	ple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments	
D V A	7.0	1<.31	Poly	§ô0	1	300.0	8		
DURAZO		15:31	1 - 0 - 7					**************************************	
				<u> </u>					
				-					
Additional Comments: Carport access part in wellhood for DTW measurement. Will Punge, until stable.									
measurement. Will Punge until stable.									
	,			J					
					······································		<u> </u>		
				······		········			

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 0.65 Casing Diameter (in): 1.02 5 61,20 1.47 Static Water Level (ft bmp): 2.61 8 94 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 282 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp Comments Elapsed Time Conductance Discharge Rate Time (°C) (SU) (min) (µS/cm) (gallons) (gpm) 323 22,2 0690 0640 7,69 15 10 0650 7,67 225 l 5 15 0650 7,64 21,2 SAMPLE INFORMATION No. of Comments Container Preservative Analysis Method Volume Time Sample ID Containers Type 300,0 POLY 125 M East 1345

Additional Commerits:	
<u> </u>	

Groundwater Sampling Form

			OCH ICARCA						
Project No:	055038				Client	Freeport Coppe		n	
Task No:	, –			Date:	10-20-10				
Well ID:	EPPF	LE E	41		Weather.	te: 10-20-10 Pather: 50NNy 703			
ADWR No:					Sampler: B50				
				Wellby					
		76	ς		Nominal !	Casing C Size (inches)	apacity Gallons per Lit	near Foot	
Well Depth (ft bis	- -	2.0	\(\)		, 4011111061	2	0.16		
Casing Diameter	(in):	2.65			4 5		0.65 1.02		
Static Water Lev	el (ft bmp):	48.88				6	1.47		
Casing Volume (gals):	56	10			8 10	2.61 4.08		
3 Casing Volume	_	1680	=)		Casing	y Volume = gallons/	oot * water column	ı (feet)	
			The state of the s	disamerin	G DATA				
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents	
11:00									
12:00	60	10	600	7.53	70-8	600.9			
12:20						-77	Ran Do	}	
12:30		****		7.66	21.0	572,1	7 1 1		
12:34							rumpre)	7	
		*.							

<u> </u>		1							
				IPLE INFO					
			Container		No. of	Analysis Method	Preservative	Comments	
	npie ID	Time	Туре	Volume	Containers				
E. P.P.C	ELE691	12:39	Poly	250	1	300.0	4		
			1						
Additional Com	ments:								
······					,				

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 10-19-16 Date: Task No: FRANCO Weather: Well ID: Sampler: ADWR No: WELLDATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 92.60 1.47 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp Comments Elapsed Time Conductance Discharge Rate (°C) Time (SU) (min) (µS/cm) (gallons) (gpm) SAMPLE INFORMATION No. of Comments Container Preservative Analysis Method Volume Time Sample ID Containers Type 1

Additional Comments:	WON 15	Not	operational.	 10-10-1
onl			V	
				 <u></u>
Marting				

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 350 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Elapsed Time рH Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 22-0 1053 250 13:40 10 in56 22.2 450 45 14 - 00 10 1068 650 21.4 10 65 14:20 850 6801 20.5 4:40 35 10 1091 7.27 20.5 1050 105 10 5:00 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Sample ID Time Containers Type 15:04 500 Last WC= 63.82. Coold Additional Comments:

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Partly Cloudy Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 194,29 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total pΗ Temp Elapsed Time Comments Conductance Discharge Rate (SU) Time (°C) (min) (µS/cm) (gallons) (gpm) SAMPLE INFORMATION No. of Container Comments Analysis Method Preservative Volume Sample ID Time Containers Type WLO Additional Comments:

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Garner 635 Partly Cloud Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 680 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 2 0.65 Casing Diameter (in): 1.02 5 225,83 1.47 6 Static Water Level (ft bmp): 2.61 8 463 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 1389 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 1035 0520 225 15 1050 0470 6,93 450 30 i5 1105 675 0480 45 1120 25,3 0500 900 60 35 0500 8,22 2573 75 1125 50 05100 1350 90 817-3 25,4 1205 SAMPLE INFORMATION Container No. of Analysis Method Comments Preservative Volume Sample ID Time Containers Type 300,0 Gerner 635 1210 Poly 500ml

librated	Helfura	ey throu	igh the pur
libreted	1 Halfurd	ay throw	igh the pure
			,
····			
			CLE/ CRE
•			

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELLDATA Nominal Size (inches) Gallons per Linear Foot Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 5 1.02 166,45 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) SAMPLE INFORMATION Container Analysis Method Comments Preservative Volume Sample ID Time Containers Type **Additional Comments:**

CLEAR ST
CREEK -OV
ASSOC!ATES

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 1,0 Date: Task No: Partly Cloud Howard Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) 200 Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 153,53 6 Static Water Level (ft bmp): 2.61 8 68 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 204 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp Elapsed Time pН Comments Conductance Discharge Rate Time (SU) (92) F (min) (µS/cm) (gallons) (gpm) 330 73.5 6,87 5 50 10 380 70,1 100 10 10 1410 6,50 70,5 150 15 10 1420 200 6,47 70,6 20 10 535 SAMPLE INFORMATION No. of Container Comments Analysis Method Preservative Volume Time Sample ID Containers Type 300.0 500m) 1019 1540 Howard

			Ì			
]					
					!	
					<u> </u>	
Additional Comments:						
)	 					
	 			·····		
<u> </u>	 	······································				
	 			······································		
					1	CLEAR A
	 		meticator Complian S	Theat vis	!	CREEK S

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot 245 Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 137,68 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp рΗ Elapsed Time Comments Conductance Discharge Rate (SU) Time (°C) (min) (µS/cm) (gailons) (gpm) 0438 6,94 20.8 0480 150 0948 10 0480 20,4 6,85 225 15 0953 0470 20.4 300 09*5*8 $\mathcal{L}_{\mathcal{O}}$ 0500 20,2 6,71 375 25 1003 0470 20,2 450 30 1008 SAMPLE INFORMATION No. of Comments Container Preservative Analysis Method Volume Time Sample ID Containers Type 300,0 Keefer 1015 500 mil Poly Additional Comments:

Additional Comments.	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 159.63 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 252 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp pΗ Comments Elapsed Time Conductance Rate Discharge (°C) Time (SU) (min) (µS/cm) (gpm) (gallons) 3:45 1722 55 6.91 22.7 11 13:50 5 6.95 1709 22.1 13:55 10 110 6.99 21.6 1710 198 18 14:03 264 6.97 11 27.0 1704 24 4:09 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Time Sample ID Containers Type 200.0 2500 MCCONNELL 265 14:10

Additional Comments:	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 8 2.61 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp Elapsed Time pΗ Conductance Comments Discharge Rate Time (SU) (°C) (min) (gallons) (µS/cm) (gpm) 13/10 80 20 7.06 160 1009 40 1004 240 60 1006 00 200 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Sample ID Time Containers Type 300-0 500

Additional Comments:	
,	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: 1,0 Task No: Weather. Moure Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Nominal Size (inches) Gallons per Linear Foot Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge ρH Temp **Elapsed Time** Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 6857 0440 12 6,86 60 5 090 2 0430 6,81 120 10 12 0907 6,79 2119 0420 80 15 12 0912 0430 240 221 12 6,79 0917 20 SAMPLE INFORMATION No. of Container Analysis Method Preservative Comments Volume Sample ID Time Containers Type Poly 300,0 0920 500ml Moore

Additional Comments:	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 10/18/10 Date: Task No: ertly Closely Noteman Weather. Well ID: Sampler: 212483 ADWR No: WELLDATA Gallons per Linear Foot 470 Nominal Size (inches) Well Depth (ft bls): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) - 225 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 1235 1470 78.8 6,00 1240 5 T 76.2 440 6003 10 12 120 1245 1430 76.2 6,08 80 **}**∼ 15 1250 SAMPLEINFORMATION No. of Container Comments Analysis Method Preservative Volume Time Sample ID Containers Type 300.0 1255 POLT 500m) Noteman Let available unter level = 327 54

Additional Comments:	1651 available weter 1600 377,51

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 417.2 416.2 11:56 SAMPLE INFORMATION Container Comments Analysis Method Preservative Volume Sample ID Time Containers Type **Additional Comments:** 4 min apart

Groundwater Sampling Form Freeport Copper Queen Branch 055038 Client Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Nominal Size (inches) Gallons per Linear Foot Well Depth (ft bls): 0.16 0.65 4 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp Elapsed Time рΗ Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 21.8 55 7.10 1228 10:40 1192 55 21.8 7.27 10:50 21.3 1172 11:00 SAMPLE INFORMATION No. of Container Analysis Method Preservative Comments Volume Time Sample ID Containers Type NWC-03 500 300.0 Poly 1105 has been on for 730 min prior to our

CREEK 5
CREEK DV
ASSOCIATES

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 10-19-10 Date: Task No: NWC-04 Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 10:05 871.2 23.0 30 150 10:10 23.5 867.9 300 10:15 10 30 23.6 B70.7 10:20 30 450 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Time Sample ID Containers Type 500mL 2*002*0 NWG-04 10:27

Additional Comments:	1) osc	IND, cont	25 TW	Well Wa	5 600 101	a leas	<u> </u>
prior	£ 111.0	. 1	<i>O</i>	1 11.1:1	Stalle		
P CION	1000 C	Ciral	1 Direjor	<u></u>	-/B b Q		
	······································						

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1,47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge рН Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 853.2 10:53 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Sample ID Time Containers Type NWG04 Additional Comments:

Groundwater Sampling Form

Project No:	055038				Client:	Freeport Coppe	r Queen Branc	h	
Task No:	1.0			,	Date:	12-14-10 Sunny 60s			
Well ID:	1.0 NW C	-04			Weather:	SUNNY G	60š	·····	
ADWR No:					Sampler:	355			
				WELL DAT	A		Life (1971 grusy 12. ly. life Captanie Willert (j. 1711 e	arge Mer Verage Silving	
Well Depth (ft bls					Nominal	Casing C Size (inches)	apacity Gallons per L	inear Foot	
	•					2	0.16 0.65	}	
Casing Diameter	(in):		10			5 .	1.02	2	
Static Water Lev	el (ft bmp):	~~ /	<u> </u>			6	1.47 2.61		
Casing Volume (gals):					10	4.08		
3 Casing Volume	es (gals):				Casing	g Volume = gallons/i	foot * water colum	n (feet)	
		angasup, duda sa.: Susangas sanga		D SAMPLIN	3 DATA				
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comm	ents	
10:00									
10:05	5	30	150	6.57	22.4	892.8			
10:15	15	.30	450	7.38	23,3	862.2			
10:20	25	30 30	750	7.40	23.6	851.3			
10									
			SAN	IPLE INFOR	MATION				
Sam	ple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments	
NWC	-04	10:30	Poly	250mL		300-0	Ø		
						,			
Additional Com	ments: N_{\odot}	Water				tuck in th	,		
<u> </u>	was c	ou for	~ 20	usin p	orior 7	o our arr	viva)		

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project Na: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 10 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total pН Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 22.4 170 H:IO22.2 170 11.20 170 27.7 11:30 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Time Containers Sample ID Type 500 for >30min prior to our Additional Comments:

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 10-18-10 Date: Task No: PALMER Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 8 2.61 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total pΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 12:45 8.13 22.1 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Sample ID Time Containers Type 300.0 PALMER POL 500mL 12:50 No access to well head. Sample is collected Additional Comments: tonk

Groundwater Sampling Form

		<u> </u>	Ouridwa					
Project No:	055038					Freeport Coppe		h
Task No:	1,0				Date:	10/18/10		
Well ID:	1,0 Panagak	(ర)			Weather:	10/18/10 Partly Clo	udy	
ADWR No:	J				Sampler:	R6		
				WELLERAT				
Well Depth (ft b	s):	200			Nominal	Casing C Size (inches)	apacity Gallons per Li	near Foot
	_	6				2	0.16 0.65	
Casing Diamete	r (in):					5	1.02	
Static Water Le	vel (ft bmp):	176,3	<u> </u>			6 8	1.47 2.61	
Casing Volume	(gals):	35				10	4.08	
3 Casing Volum	ies (gals):	105			Casing	g Volume = gallons/	foot * water column	
				D SAMPLIN	CIDATIA.			
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Specific Conductance (µS/cm)	Comme	ents
1420								
1425	5	5	25	6,73	73.8	1500		
1430	lu	_5	50	6,73	72.3	1500		
1435	15	5	75	6.67	7/17	1530		
1440	2.0	5	100	6,38	71.8	1530		
					<u> </u>			
<u> </u>								
					<u> </u>			
			l San	PENNEO:	MATION			
	nple ID	Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments
Panaga	z ka s	1445	Poly	500m)		300.0		
, c, j = j =	<u> </u>		<i>[6 </i>					
		<u></u>			1			Anne and the second
Additional Con	ments:							
					<u> </u>			
						***************************************	······································	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 1,0 Date: Task No: Cloudy Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 355 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): HELD SAMPLING DATA Specific Total Discharge Elapsed Time pН Temp Comments Conductance Rate Discharge Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 0810 7,28 1250 30 20,7 0813 10 60 20,9 1260 6 0 0816 G 90 20,7 1270 10 0819 1270 120 21,4 12 10 0822 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Time Sample ID Containers Type Purra 3000 250M) PU/4 0825

Additional Comments:	<u>1</u> Vo	WL	Decause	010	Sounder	<u> </u>	stuck	<u> </u>	
the c	vell								
	•								······································

				····					

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 300 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 4 0.65 Casing Diameter (in): 1.02 5 152 38 6 1.47 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (uS/cm) (gpm) (gallons) 15:15 1187 21.9 7.30 225 15:30 1198 21.1 15 7.31 30 450 1277 675 7.33 21.3 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Sample ID Volume Time Containers Type 10/0/6/0

Additional Comments:	Duplicate	DOPIOI	8/0	
	- Land -			
<u> </u>		<u> </u>		

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 10 Date: Task No: POOL Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 4 0.65 Casing Diameter (in): 1.02 5 206,74 6 1.47 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 468 3 Casing Volumes (gais): FIELD SAMPLING DATA Specific Total Discharge рΗ Temp Elapsed Time Comments Conductance Rate Discharge Time (SU) (°C) (min) (uS/cm) (gpm) (gallons) 0935 0720 7,76 140 10 0945 0620 280 7,80 0955 L 20 0620 25 14 350 7,81 1000 0620 21,3 420 1005 30 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Sample ID Time Containers Type Poo 30000 250ml 1010 Additional Comments:

Additional Comments.	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: 60 Task No: Partly Cloudy Ramirez Weather. Well ID: Sampler ADWR No: WELL DATA Casing Capacity 300 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 6 0.65 4 Casing Diameter (in): 5 1.02 161,23 6 1.47 Static Water Level (ft bmp): 2.61 8 4.08 204 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 612 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp Elapsed Time pН Comments Conductance Rate Discharge Time (°C) (SU) (min) (µS/cm) (gallons) (gpm) 0440 25,6 10 8113 8 180 1325 0440 24,2 8,03 1335 20 18 360 0450 23,9 7,95 25 18 450 340 0450 7,91 540 23,7 30 18 345 SAMPLE INFORMATION No. of Container Analysis Method Preservative Comments Volume Sample ID Time Containers Type ROMATES 1350 300.0 DOIT 500m)

THE INTERIOR CO.		1 //			9		
			•				
			<u></u>				<u> </u>
						,	
ditional Comments:							
						······································	
							~ = a = -
							CLEAR STEEKS
Apriliante & MOSSONS Conner Ott	een Bronch Mitiration Or	rier\Groundwater Mo	nitoring\Forms\Gro	undwater Sampling	Sheet_xls		ASSOCIATE

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Cloudy 60% Weather. Well ID: Sampler: ADWR No: **WELL DATA** Casing Capacity Gallons per Linear Foot 100 Nominal Size (inches) Well Depth (ft bis): 0.16 4 0.65 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 222 3 Casing Volumes (gals): FIEED SAMPEING DATA Specific Discharge Total Temp Elapsed Time pΗ Comments Conductance Rate Discharge Time (SU) (°C) (min) (uS/cm) (gallons) (gpm) 8:20 7. OB 19.5 1377 70 7 8:30 iB 7 7.10 2011 1369 140 8.40 20 1368 19.6 30 7 7.14 210 8:50 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Time Sample ID Containers Type 300.0 Poly 500

1	·			1		ļ		
Addition	al Comments:				de concentration de la con			
Addition	a Comments.							
L'Projects	G & K\055038_Capper Queen B	ranch Mitigation On	der\Groundwater Mor	nitoring\Forms\Grox	undwater Sempling S	Sheet.xis	1 1	CLEAR ST

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 2 0.16 0.65 4 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge ρН Temp Elapsed Time Comments Conductance Rate Discharge Time (SU) (°C) (min) (µS/am) (gpm) (gallons) 8:48 19.8 2 634.9 4 2 7.67 20.1 B:50 2 598. 7 10 7.63 20.8 5 634.0 9 7_ 18 20.8 7.50 8:57 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Sample ID Time Containers Type Additional Comments:

CREEK S
CREEK -O
ASSOCIATES

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: -19-10 Date: Task No: Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 140 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 2 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 10 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 30 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge рΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 8.05 70 20.4 649.0 7.52 8.15 10 638.8 84 39 20.5 8:17 12 643.8 8:19 7.32 21.1 108 SAMPLE INFORMATION No. of Container Preservative Comments Analysis Method Volume Time Sample ID Containers Type 200-0 202 500ml

ROGERSOUS	00.00	PULY	J	<u> </u>	1 3		
				İ		1	
						1	
,		<u> </u>	1 1 1	1	1		
Additional Comments: Co	llect	Dupe	labelle	<u>d</u> D	JP 10191	<u> </u>	
		Ŋ					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

							CHEAR S
Annaire De MOEEDOR Compar Dupper	Bronch Milination ()	ded Commonwater M	anitorinalForms\Grov	Indwater Sampling	Sheet.xts		CREEK 70'
L:\Projects\G & K\055038_Copper Queen	Branch Miligation Or	den Groundwater M	onitoring\Forms\Grou	mowater Sampling	SHEECKIS		ASSUC

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELLDATA Casing Capacity 2901 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 2 0.65 Casing Diameter (in): 5 1.02 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Elapsed Time Comments Conductance Discharge Rate Time (SU) (°C) (min) (µS/cm) (gallons) (gpm) 3 90 251 \bigcirc 76 23,4 0460 260 20 23,3 0460 390 30 78 2218 0460 520 7,80 40 SAMPLE INFORMATION Container No. of Analysis Method Preservative Comments Volume Sample ID Time Containers Type Rogers 300,0 250m) 1522 POLY

Additional Comments:	

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: Date: Task No: Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 312 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 6 4 0.65 Casing Diameter (in): 5 1.02 1,47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Temp Elapsed Time рΗ Comments Conductance Rate Discharge Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 0850 20,6 1030 30 フィネク 0855 ७९७० 48 20,5 0858 5 6 0980 60 20,6 0860000 10 7,53 0970 7,52 66 20,7 11 0901 SAMPLE INFORMATION No. of Container Analysis Method Preservative Comments Volume Sample ID Time Containers Type 0903 300,0 Ruiz 250ml 0014 that tape is getting stuck at 1641 WL.

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: 10 Date: Task No: artly Cloud Weather: Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 305 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 126,30 1.47 6 Static Water Level (ft bmp): 2.61 8 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Elapsed Time pН Temp Comments Conductance Rate Discharge Time (SU) (°C) (min) (µS/cm) (gpm) (gallons) 1538 7,90 150 ID548 21,8 710 20 15 300 7,76 558 0700 30 15 450 7,72 608 07104RG 7,76 600 40 15 1618 750 2112 0710 1628 50 15 SAMPLE INFORMATION No. of Container Preservative Comments Volume Analysis Method Sample ID Time Containers Type 300,0 1632 250m **Additional Comments:**

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: Weather. Well ID: Sampler. ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 0.65 4 Casing Diameter (in): 5 1.02 130,84 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total pН Temp Elapsed Time Conductance Comments Rate Discharge Time (°C) (SU) (min) (µS/cm) (gallons) (gpm) SAMPLE INFORMATION No. of Container Comments Analysis Method Preservative Volume Sample ID Time Containers Type

Additional Comments:

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 100 Date: Task No: 875 Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 5 1.02 6 1.47 Static Water Level (ft bmp): 8 2.61 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total рΗ Temp Elapsed Time Comments Conductance Discharge Time Rate (°C) (SU) (min) (gallons) (µS/cm) (gpm) 0920 7,69 1223 0890 7,72 1226 0890 1228 SAMPLE INFORMATION Container Analysis Method Comments Preservative Sample ID Time Volume Containers Type 300,0 125ml 1230

Additional Comments:	Hump a	Magdy	pumping	,	
			7		
WARRANT L. SERVICE CO.				 	
L.C. Company of the C					

Groundwater Sampling Form Freeport Copper Queen Branch 055038 Client Project No: Date: Task No: Weather: Well ID: Sampler: ADWR No: **WELL DATA** Casing Capacity 320 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 4 0.65 Casing Diameter (in): 1.02 5 6 1.47 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Discharge Total Elapsed Time рΗ Temp Conductance Comments Time Rate Discharge (SU) (°C) (min) (uS/cm) (gallons) (gpm) 15:50 60 7.66 12 120 12 21.3 378.1 4:00 7.64 180 378.8 12 21.2 16:05 SAMPLE INFORMATION No. of Container Preservative Analysis Method Comments Volume Sample ID Time Containers Type 500 16:08 *२०*०.७ No access to **Additional Comments:**

Groundwater Sampling Form

			OWIIWAA				<u> </u>	
Project No:				Client	Freeport Copper Queen Branch			
Task No:	1.0 Weiskopf			Date:	10/20/10 cloudy RG			
Well ID:	Weisko	0 F			Weather.	cloudy		
ADWR No:					Sampler:	RG		
				WELLDAY	Å			
Well Depth (ft bl:	s):	200			Casing Nominal Size (inches)		Capacity Gallons per Linear Foot	
, , ,		6			2 4		0.16 0.65	
Casing Diameter (in):					5		1.02	
Static Water Level (ft bmp):		147.11			6 8		1.47 2.61	
Casing Volume (gals):		78			10		4.08	
3 Casing Volumes (gals):		234			Casing Volume = gallons/foot * water column (feet)			n (reet)
				idisampiin I		Specific		
Time	Elapsed Time (min)	Discharge Rate (gpm)	Total Discharge (gallons)	pH (SU)	Temp (°C)	Conductance (µS/cm)	Comm	ents
1040		(gpiii)	(gallons)					
1045	5	10	50	7,49	21,5	1330		илринами каптания прои
1050	10	10	100	7,59	21,6	1350		
1055	15	10	150	7,63	2119	1370		
1100	3-0	10	200	7,64	21,6	1360		
-								
			SAV	IELE INEOR	MATION			
Sample ID		Time	Container Type	Volume	No. of Containers	Analysis Method	Preservative	Comments
Weiskopf		1105	poly	125ml		300.0		
0001370077		1003	 	, , , , , , , , , , , , , , , , , , , ,				
- · · · · · · · · · · · · · · · · · · ·								
		<u> </u>						
Additional Comr	nents: Dezal	ice to t	skan n	INP 102	J10 1	time = 09	.3c	
Additional Cons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 2 2 2 4 1		<u> </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	

				······································		NI		
	·····							

Groundwater Sampling Form Freeport Copper Queen Branch Client 055038 Project No: 1.0 Date: Task No: Zander Weather. Well ID: Sampler: ADWR No: WELL DATA Casing Capacity 280 Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bis): 0.16 0.65 4 Casing Diameter (in): 1.02 5 147,80 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 194 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 582 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge pΗ Temp Elapsed Time Comments Conductance Rate Discharge Time (SU) (°C) (min) (uS/cm) (gpm) (gallons) 0750 7,04 0550 21,2 10 150 0800 6.98 0420 225 2113 0805 300 6,87 21,2 0430 0810 20 0430 375 6,79 21,3 0815 25 0430 21,3 450 77 0820 30 0430 21,3 525 678 0825 35 15 SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Sample ID Time Containers Type 0830 3000 Zander poly 500ml

Additional Comments:	
•	

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: FB 7010121 Weather: Well ID: Sampler: ADWR No: **WELL DATA** Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 10 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pН Comments Elapsed Time Conductance Discharge Rate Time (SU) (°C) _(min) (µS/cm) (gallons) (gpm) SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Sample ID Time Containers Type FB 20107214

Additional Comments:	Field	Blank		 	
·					

***************************************			*		

Groundwater Sampling Form Freeport Copper Queen Branch Client: 055038 Project No: Date: Task No: FOB 20161214 Weather: Well ID: Sampler: ADWR No: **WELL DATA** Casing Capacity Gallons per Linear Foot Nominal Size (inches) Well Depth (ft bls): 0.16 2 0.65 4 Casing Diameter (in): 1.02 5 1.47 6 Static Water Level (ft bmp): 2.61 8 4.08 Casing Volume (gals): Casing Volume = gallons/foot * water column (feet) 3 Casing Volumes (gals): FIELD SAMPLING DATA Specific Total Discharge Temp pΗ Elapsed Time Comments Conductance Discharge Rate Time (°C) (SU) (uS/cm) (min) (gallons) (gpm) SAMPLE INFORMATION No. of Container Comments Preservative Analysis Method Volume Time Sample ID Containers Type 300.0 750 EC2B 20101214 11:05 Additional Comments:

CLEAR CREEK	<u>ক্র</u>
ASSOC	